

End-to-end Autonomy

Dr. Hongyang Li

OpenDriveLab at Shanghai Al Lab Mar 20, 2024

Outline

端到端自动驾驶概述

- o 模块化设计 vs 端到端背景
- o 工业界应用
- o 研究时间线
- o 端到端应用场景

• 主流工作选讲

- o 第一组: WoR / NEAT / UniAD / DriveAdapter 等
- o 第二组: GenAD / ViDAR / ELM / DriveLM 等
- o 第三组: GAIA-1 / EgoStatus / Panacea

• 当前挑战

o 泛化能力、多模态等挑战 (8种)

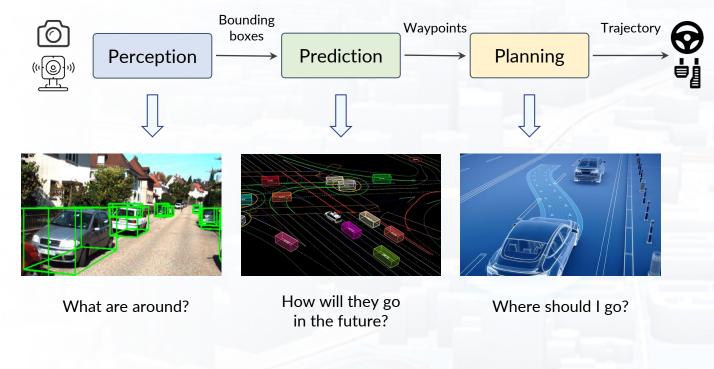
● 未来工作

• 与大模型、世界模型等内容结合

End-to-end Autonomous Driving An Introduction

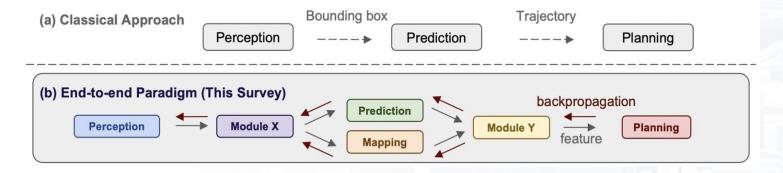
Autonomous Driving (AD) Tasks

Challenge | Various weathers, illuminations, and scenarios



Open AriveLab

回顾: Why end to end?

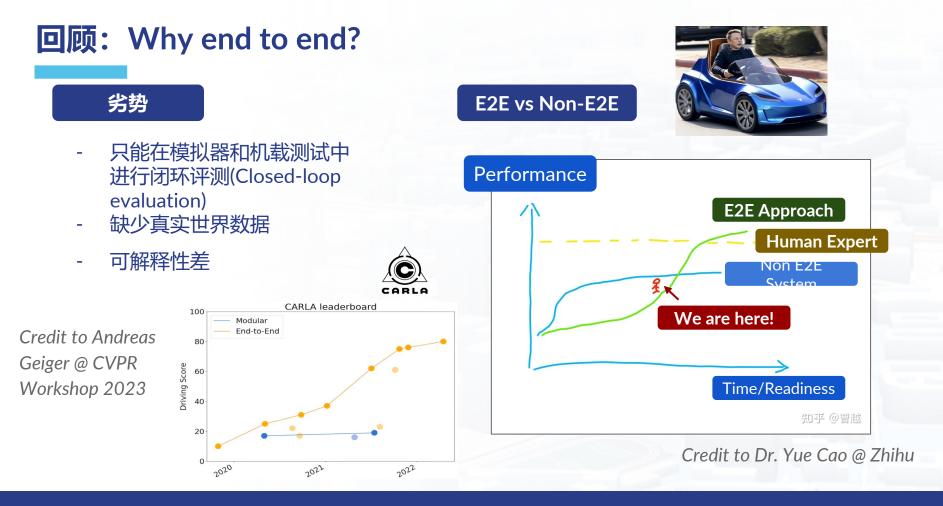


端到端自动驾驶系统:

- 将原始传感器数据作为输入
- 输出轨迹规划,或低级别的控制信号

https://github.com/OpenDriveLab/E nd-to-end-Autonomous-Driving

- + 将所有模块合并为一个可联合训练的单一模型带来的便利性
- + 避免模块化设计带来的级联错误
- + 直接针对最终任务进行优化 (规划/轨迹预测)
- + 计算效率高 (共享 backbone), 对最终产品友好



Open AriveLab

Roadmap | End-to-end Autonomous Driving

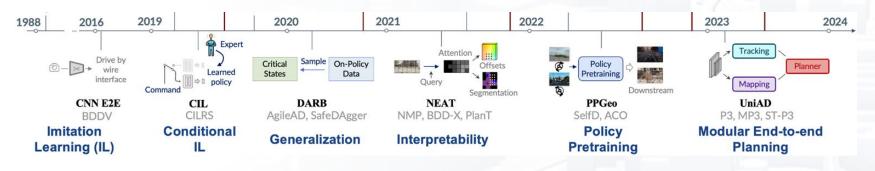
Summary (1/2)

- Carla leaderboard gets much improved over the years. With new mapping / routes (Carla v2) and nuPlan benchmark, this field got so much to do.
- RL method is prevalent in the beginning (since it's natural)
- Input modality and more advanced structure boosts the performance

Roadmap | End-to-end Autonomous Driving

Summary (2/2)

- The First Neural Net based method dates back to 2016 using Imitation Learning
- Learned policy from Experts (IL), with data augmentation, could prevail in performance
- Interpretability, with explicit design in the network stands out recently
- End-to-end design comes to obsess many merits in previous attempt



Trending | End-to-end Autonomous Driving

No hard-code

v12 is reserved for when FSD is end-to-end AI, from images in to steering, brakes & acceleration out.

Industry

Tesla Optimus 💸 🔽 @Tesla_Optimus · Sep 24 Optimus can now sort objects autonomously 🧝

Its neural network is trained fully end-to-end: video in, controls out.

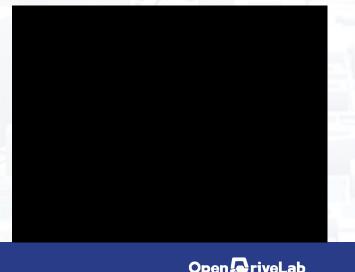
This end to end neural network approach will result in the safest, the most competent, the most comfortable, the most efficient, and overall, the best self-driving system ever produced. It's going to be very hard to beat it with anything else!

Selon Musk 🔮 🛛 @elonmusk · Aug 26 twitter.com/i/broadcasts/1...

Completely learning on its own. End-to-end, video to neural network to controls. Don't need map data at all, only coordinates! No cellular connection needed.

My Opinion

- Probably e2e as a backup module
- Massive high-quality data prevail
- Mapless is promising and feasible



CNBC Report | Discussion Thread on Zhihu | Live Stream

Trending | End-to-end Autonomous Driving

And many others ...

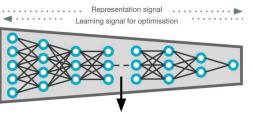
Driving Input, 10⁸ dimensions

Q GNSS

Basic Sat-nav Map

Vehicle State

+ other sensing modalities where required, e.g. RADAR



Decoded human-interpretable intermediate representations

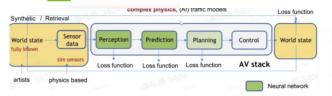
Semantics, geometry, motion prediction.

Industry

- Openpilot is an open source driver assistance system.
- Openpilot performs the functions of Automated Lane Centering (ALC) and Adaptive Cruise Control (ACC) for 250+ supported car makes and

https://arxiv.org/abs/2206.08176

Open 🔁 rive Lab



附件4 内容

Public Opinions on Our Survey

Alex Kendall 🤣 @alexgkendall

This is a fantastic, comprehensive and forward-looking survey of academic literature about end-to-end machine learning for autonomous driving. It is a very timely publication as the field is exploding with interest right now.

I'm aligned with the paper's conclusions on open algorithmic challenges. There's loads of insight around opportunities like world modelling, language, foundation models and long-tail robustness. This paper also exposes that academic literature under-appreciates significant industry challenges right now, such as (1) safety, reward modelling and policy alignment against human expectations and risk, or (2) the significance of establishing a synthetic/real-world data engine for training/validation, which are critical to the success of any machine learning system. I'd love to see more work in these areas.

Great to see @AutoVisionGroup @francislee2020, well done!

Awesome Vision Group @AutoVisionGroup · Sep 18

Paper

https://arxiv.org/pdf/2306.16927.pdf

Repo (paper collection)
 <u>https://github.com/OpenDriveLab/End-</u>
 to-end-Autonomous-Driving

Yann LeCun 🤣 🙉

A nice survey of end-to-end learning methods for autonomous driving.

Sep 18 Awesome Vision Group @AutoVisionGroup · Sep 18

Why are Tesla @elonmusk and Wayve @alexgkendall @Jamie_Shotton moving towards end-to-end autonomous driving? What is the state-of-the-art in this field? With our friends @francislee2020 we recently wrote an extensive survey paper on this emerging topic: arxiv.org/abs/2306.16927

202339B 端到端自动驾驶

Original 吴双 吴言吴语 2023-10-02 05:42

收录于合集 #自动驾驶 201

这周我们读一篇提交到PAMI的端到端自动驾驶的综述论文: SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2023

End-to-end Autonomous Driving: Challenges and Frontiers

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger and Hongyang Li

Arxiv链接: https://arxiv.org/abs/2306.16927

可以看到这篇文章在六月份,好像是CVPR会议期间就挂到了arxiv上,当时眼前一亮随 手放在了桌面,结果回头就忘了,最近SS兄提醒,就给自己安排了周末作业。由于论文 覆盖的内容很多,今天就只聊一聊我个人看到的值得注意或者觉得需要强调的点。

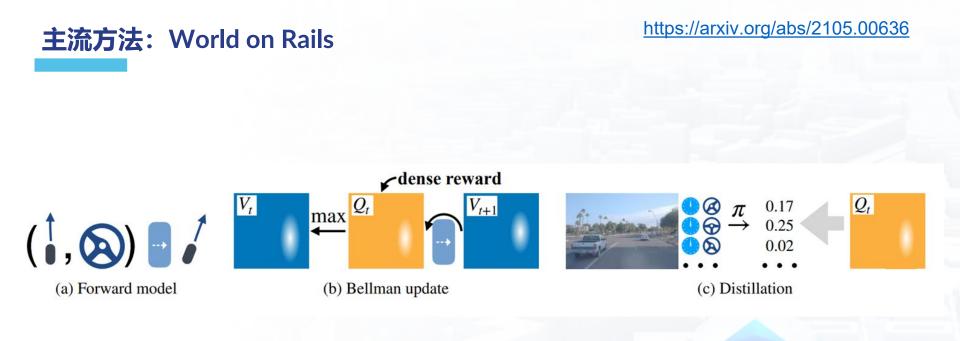
总结:很好的综述,值得看看。

Join Slack Discussions!

...

https://join.slack.com/t/opendrivel ab/shared_invite/zt-244lgu87beLonLQzle4wRkg8W8WOUlg

主流工作选讲 - Part 1 ST-P3 / PPGeo / NEAT / WoR



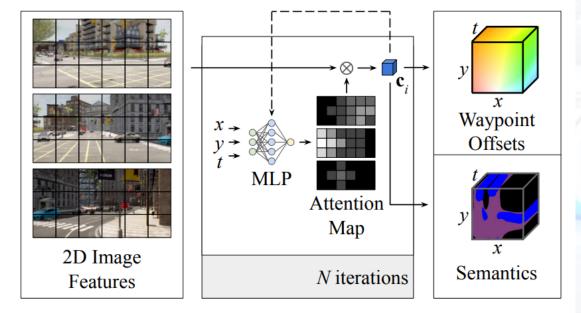
https://arxiv.org/pdf/2301.01006.pdf

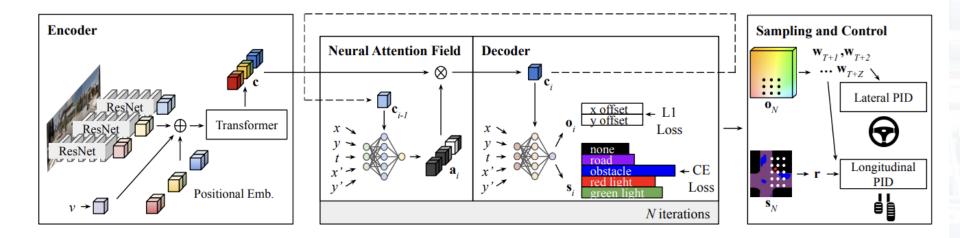
主流方法: PPGeo



Open AriveLab 17

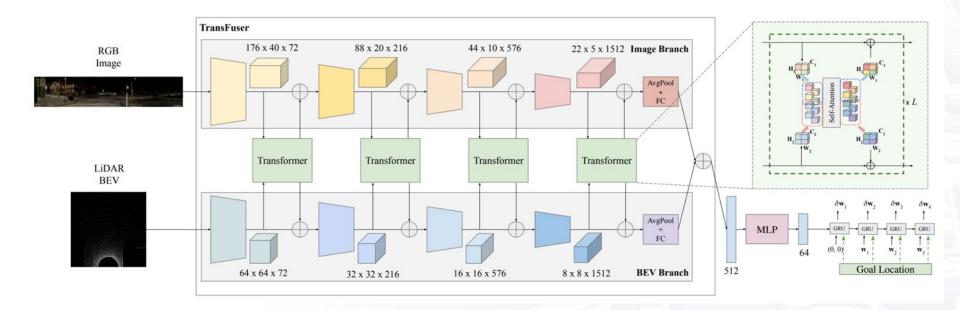
https://arxiv.org/pdf/2109.04456.pdf



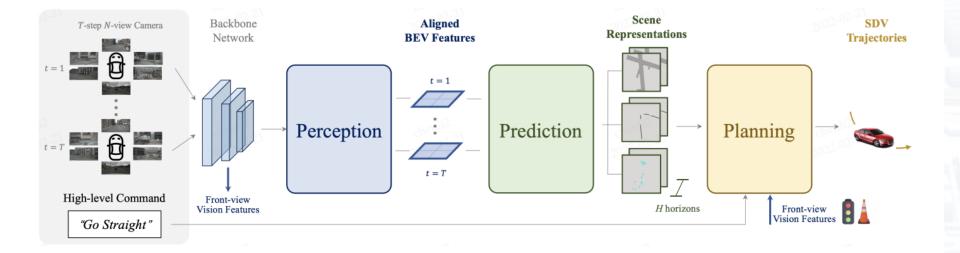


https://arxiv.org/abs/2205.15997

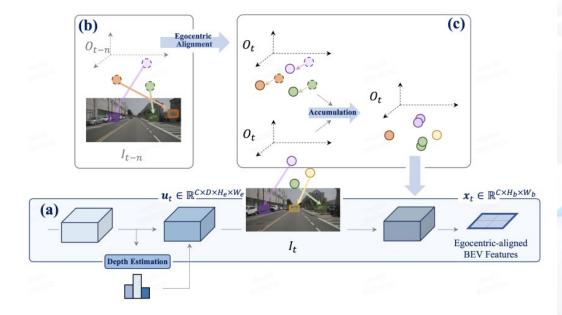
主流方法: TransFuser



https://arxiv.org/abs/2207.07601

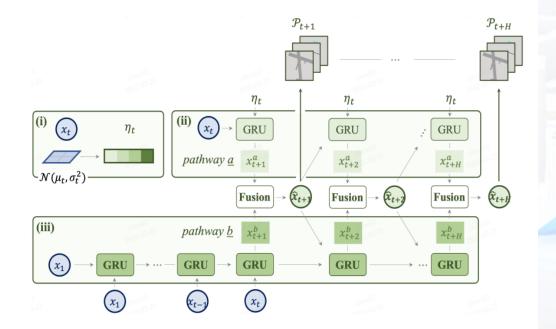


https://arxiv.org/abs/2207.07601

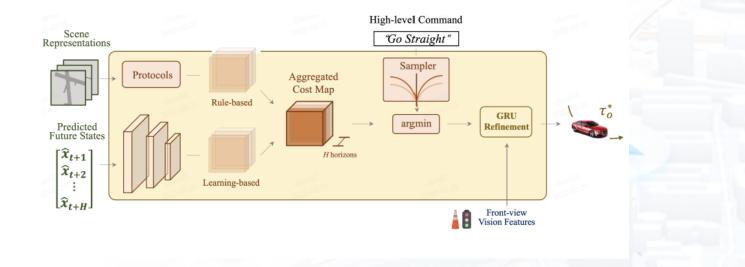


Open AriveLab 22

https://arxiv.org/abs/2207.07601



主流方法: ST-P3



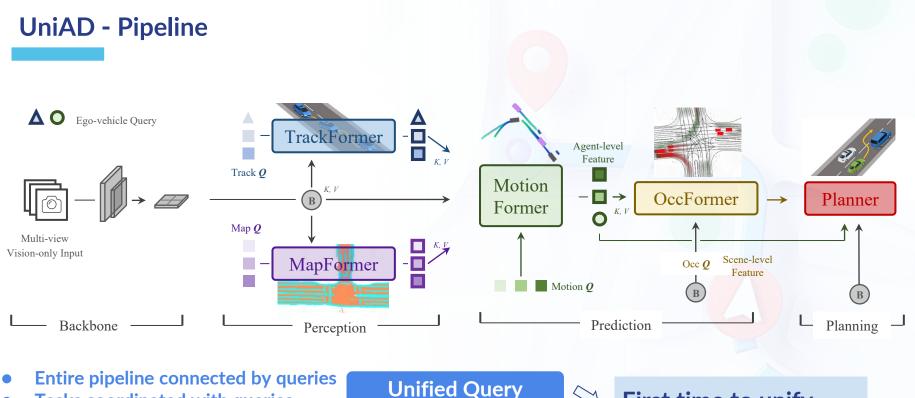
Open PriveLab 24

CONTENTS

A quick recap on

Best Paper Award

Planning-oriend Autonomous Driving



- Tasks coordinated with queries
- Interactions modeled by attention

Transformer-based

 $\langle \mathcal{A} \rangle$

First time to unify full-stack AD tasks!

UniAD - Ablation Results

Tasks benefit *g* each other and contribute to safe planning

	Modules				Tracking			Mapping		Motion Forecasting			Occupancy Prediction				Planning		
ID	Track	Map	Motion	Occ.	Plan	AMOTA↑	AMOTP↓	$\text{IDS}{\downarrow}$	IoU-lane↑	$IoU\text{-}road\uparrow$	$minADE {\downarrow}$	minFDE↓	$MR {\downarrow}$	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑	avg.L2↓	avg.Col.↓
0*	1	~	1	1	1	0.356	1.328	893	0.302	0.675	0.858	1.270	0.186	55.9	34.6	47.8	26.4	1.154	0.941
1	1					0.348	1.333	791	-	-	-	-	-	-	-	-	-	-	-
2		1				-	-	-	0.305	0.674	-	-	-	-	-	-	-	-	-
3	1	1				0.355	1.336	<u>785</u>	0.301	0.671	-	-	-	-	-	-	-	-	-
4			1			-	-	-	-	-	0.815	1.224	0.182	-	-	-	-	-	-
5	1		1			0.360	1.350	919	-	-	0.751	1.109	0.162	-	-	-	-	-	-
6	1	~	1			0.354	1.339	820	0.303	0.672	0.736(-9.7%)	1.066(-12.9%)	0.158	-	-	-	-	-	-
7				1		-	-	-	-	-	-	-	-	60.5	37.0	52.4	29.8	-	-
8	1			~		0.360	1.322	809	-	-		-	-	<u>62.1</u>	38.4	52.2	32.1	-	-
9	1	1	1	1		0.359	1.359	1057	0.304	0.675	0.710 (-3.5%)	1.005(-5.8%)	0.146	62.3	<u>39.4</u>	53.1	<u>32.2</u>	-	-
10					1		-	-	-	-	-	-	-	-	-	-	-	1.131	0.773
11	1	~	1		1	0.366	1.337	889	0.303	0.672	0.741	1.077	0.157	-	-	-	-	<u>1.014</u>	<u>0.717</u>
12	1	1	1	1	1	0.358	<u>1.334</u>	641	0.302	0.672	0.728	<u>1.054</u>	<u>0.154</u>	62.3	39.5	<u>52.8</u>	32.3	1.004	0.430

Conclusion:

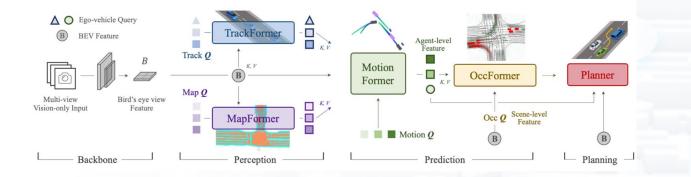
- ID. 4-6: Track & Map \rightarrow Motion \mathscr{J}
- **ID. 7-9:** Motion $\mathscr{A} \leftrightarrow$ Occupancy \mathscr{A}
- ID. 10-12: Motion & Occupancy \rightarrow Planning \mathscr{A}

UniAD - Recover from Upstream Errors

Planner could still attend to 'undetected'

UniAD: One-page Summary

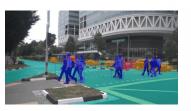
- Planning-oriented Philosophy: An end-to-end autonomous driving (AD) framework in pursuit of safe planning, equipped with a wide span of AD tasks.
- Unified Query design: Queries as interfaces to connect and coordinate all tasks.
- State-of-the-art (SOTA) Performance with vision-only input.
- First Step towards Autonomous Driving Foundation Models



Open AriveLab

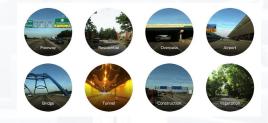
What's next

Tasks, Training Strategies, etc



Closed-loop Evaluation

Scale-up?



Perception / Visual Abstraction **E2E Challenges**

DriveData / DriveAGI

CONTENTS

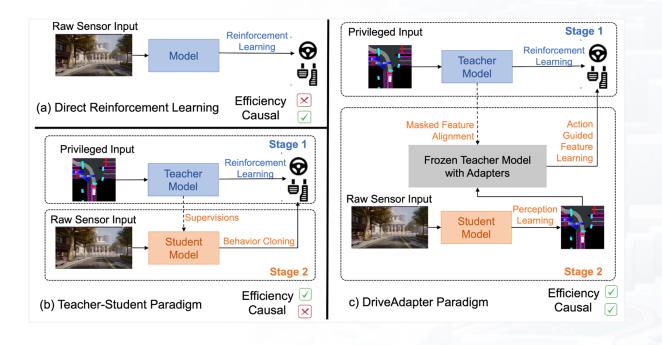
From UniAD to DriveAGI ICCV23 Oral

DriveAdapter

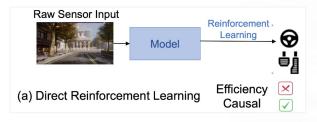
Poster: THU-AM-Room "Nord"-155

Github: https://github.com/OpenDriveLab/DriveAdapter

How to balance the efficiency and causal reasoning ability?

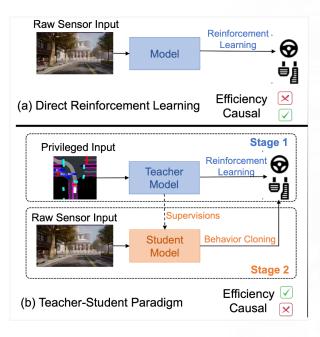


How to balance the efficiency and causal reasoning ability?

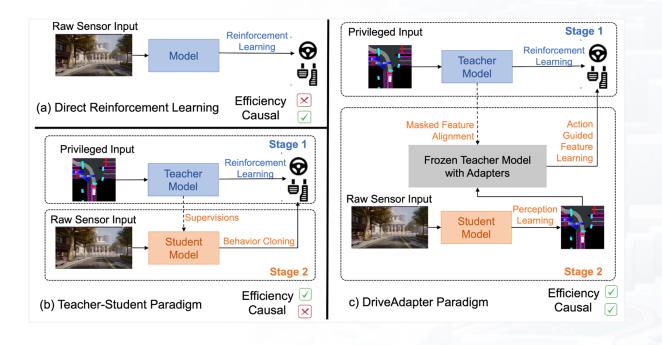


Shanghai Al Laboratory

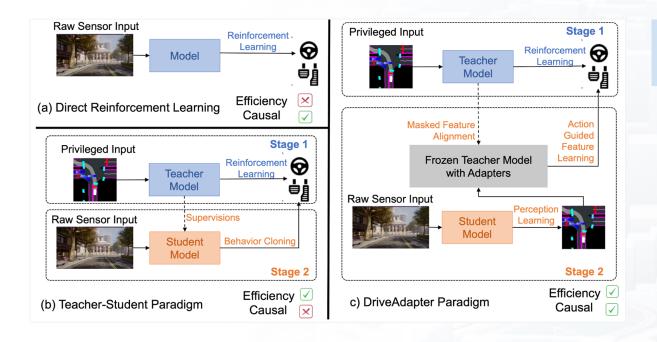
How to balance the efficiency and causal reasoning ability?



How to balance the efficiency and causal reasoning ability?



How to balance the efficiency and causal reasoning ability?



Utilize the strong RL-based privileged teacher model!

- Train a Teacher Model for Planning by RL
- End-to-End Connected by Adapter
- Train a Student Model for Perception

DriveAdapter - Challenge

Challenge 1: Student Model is not perfect

Privileged Input

Perception Result

BEVFusion + Mask2Former 2M training data

Method	Input	Driving Score \uparrow			
Transfuser [39, 8]	Camera + LiDAR	31.0			
LAV [3]	Camera + LiDAR	46.5			
Student Model + Frozen Roach	Camera + LiDAR	8.9			
Roach [55]	Privileged Info.	74.2			
Roach + Rule [50]	Privileged Info.	87.0			

• Directly feeding the perception results into the teacher model does **NOT** work.

DriveAdapter - Challenge

Challenge 1: Student Model is not perfect



Privileged Input

Perception Result

BEVFusion + Mask2Former 2M training data

Challenge 2: Teacher Model is not perfect

Example: Emergency brake if there is any obstacle in the front - require privileged information

```
## Rules for emergency brake
should_brake = self.collision_detect()
only_ap_brake = True if (control.brake <= 0 and should_brake) else False
if should_brake:
    control.steer = control.steer * 0.5
    control.throttle = 0.0
    control.brake = 1.0</pre>
```

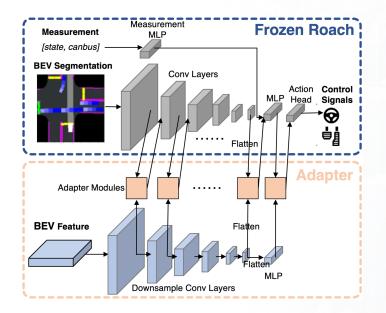
Method	Input	Driving Score \uparrow		
Transfuser [39, 8]	Camera + LiDAR	31.0		
LAV [3]	Camera + LiDAR	46.5		
Student Model + Frozen Roach	Camera + LiDAR	8.9		
Roach [55]	Privileged Info.	74.2		
Roach + Rule [50]	Privileged Info.	87.0		

- Directly feeding the perception results into the teacher model does **NOT** work.
- Teacher Model would be the **upper bound** of Student Model's performance

Shanghai AI Laboratory

DriveAdapter - Method

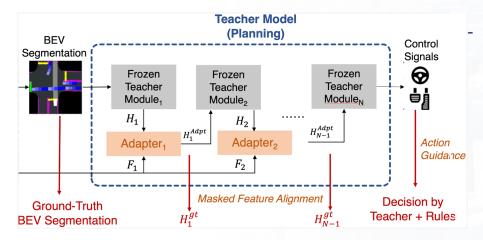
Idea 1: Deal with the distribution shift of between perception GT and prediction



- Reduce the error in an end-to-end layer-by-layer manner:
 - Roach (teacher model) = 6 Convs -> flatten -> 4 linears
 - Adapter module after each layer
 - Adapter Input: $H_{i-1}^{\text{Adpt}} = \text{Adapter}_{i-1}([H_{i-1}; F_{i-1}])$
 - Adapter Output: $H_i = \text{Teacher}_i(H_{i-1}^{\text{Adpt}})$
 - Adapter Target/Label: GT feature map of teacher

DriveAdapter - Method

Idea 2: Inject the driving knowledge within rules into the model



Store the knowledge in the Adapter module:

- Target: let the frozen teacher action head output corrected action
- Mask feature alignment loss for failure cases not to learn the undesired feature map
- Directly apply action loss for failure cases guide the middle feature maps by backpropagation

DriveAdapter - Experiments

SOTA driving performance on CARLA closed-loop benchmark

Method Teacher		Student	Reference	DS↑	RC↑	IS↑
CILRS [11]	Rule-Based	Behavior Cloning	CVPR 19	7.8	10.3	0.75
LBC [4]	Imitation Learning	Behavior Cloning + DAgger	CoRL 20	12.3	31.9	0.66
Transfuser [39, 8]	Rule-based	Behavior Cloning	TPAMI 22	31.0	47.5	0.77
Roach [55]	Reinforcement Learning	Behavior Cloning + DAgger	ICCV 21	41.6	96.4	0.43
LAV [3]	Imitation Learning	Behavior Cloning	CVPR 22	46.5	69.8	0.73
TCP [50]	Reinforcement Learning	Behavior Cloning	NeurIPS 22	57.2	80.4	0.73
ThinkTwice [26]	Reinforcement Learning	Behavior Cloning	CVPR 23	65.0	95.5	0.69
DriveAdapter	Reinforcement Learning	Frozen Teacher + Adapter	Ours	61.7	92.3	0.69
DriveAdapter + TCP Reinforcement Learnin		Frozen Teacher + Adapter	Ours	65.9	94.4	0.72
MILE*† [18]	Reinforcement Learning	Model-Based Imitation Learning	NeurIPS 22	61.1	97.4	0.63
Interfuser* [43]	Rule-Based	Behavior Cloning + Rule	CoRL 22	68.3	95.0	-
ThinkTwice* [26]	Reinforcement Learning	Behavior Cloning	CVPR 23	70.9	95.5	0.75
DriveAdapter + TCP* Reinforcement Learning		Frozen Teacher + Adapter	Ours	71.9	97.3	0.74

DriveAdapter - Take-away

- Breaking the coupling barrier of Perception and Planning:
 - Driving knowledge from millions of steps of exploration by RL -> *causal reasoning* (MDP; reward), *robustness* (all kinds of strange cases/scenarios during exploration)
 Efficient training for the student model
 - **Efficient** training for the student model
- Masked feature distillation: Combine the knowledge of learning-based teacher and human designed rules
- Real-world application (potential): A teacher on large-scale real-world motion dataset, and use DriveAdapter to solve domain adaptation for deployment
- A Further Step towards Real-world End-to-end Autonomous Driving!

主流工作选讲 - Part 2 GenAD / ViDAR / ELM / etc

Open AriveLab

How to scale up the autonomous driving models? VIDAR

ViDAR - World Model

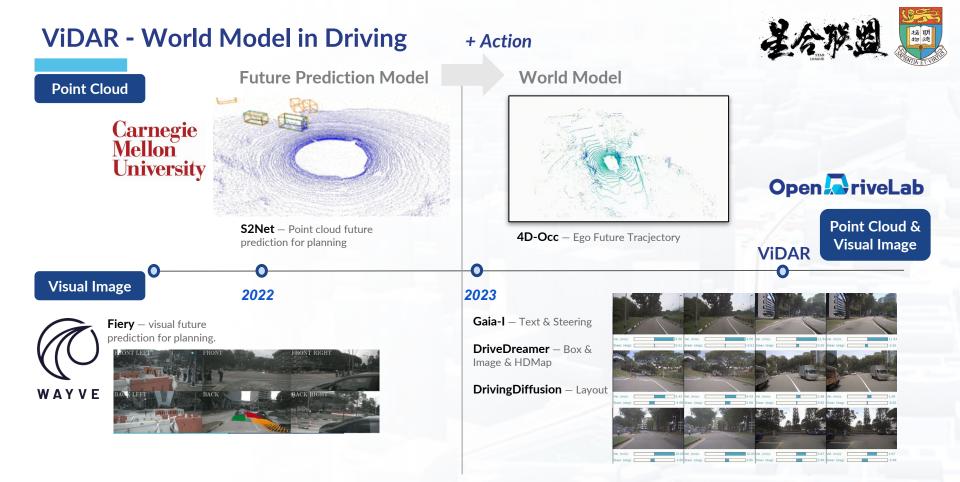
configurator

Short-term

A Path Towards Autonomous Machine Intelligence Version, Yann Lecun

Task / Objective:

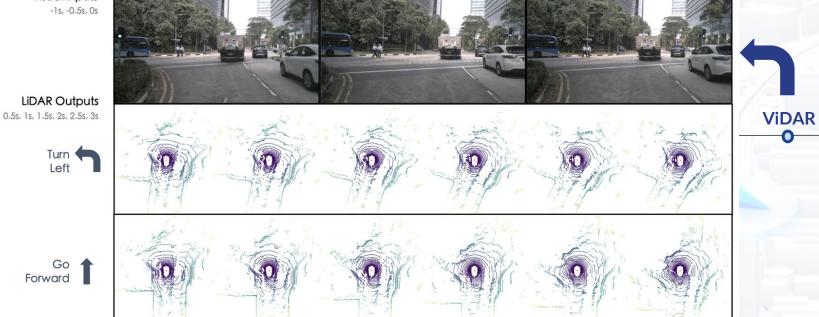
- Represent the world & Learn to predict and re-act
 - Simulate the world without **REAL** interaction with the world.



ViDAR - World Model in Driving + Action

The First Multimodal World Model

Visual Inputs -1s, -0.5s, Os



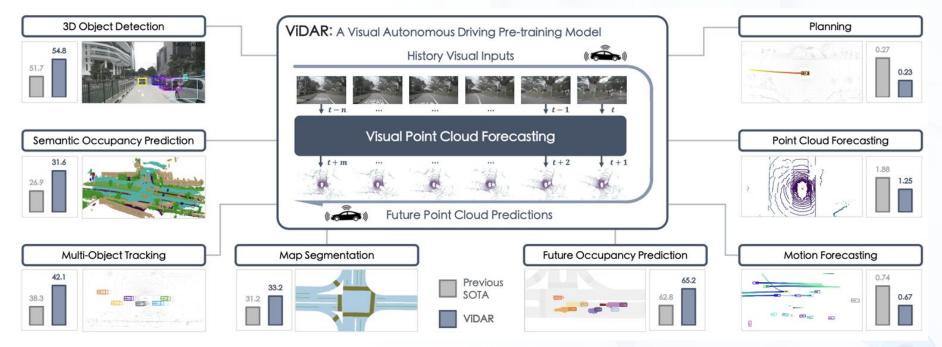
Introducing ViDAR, Visual Point Cloud Forecasting for Scalable Autonomous Driving

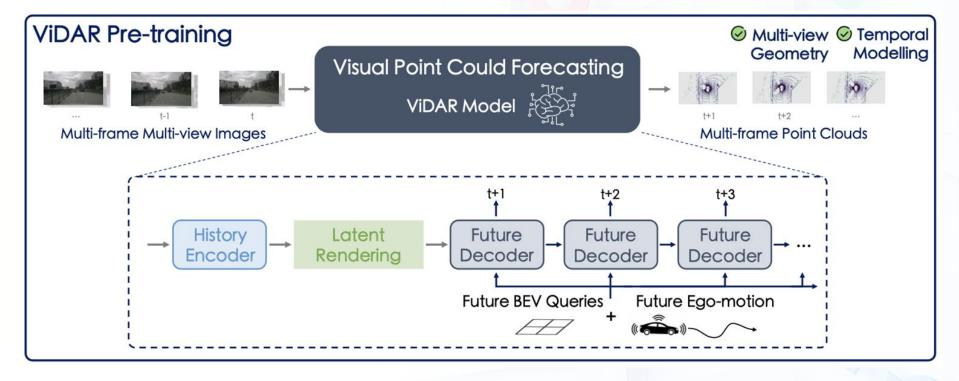
Visual Point Cloud Forecasting enables Scalable Autonomous Driving

Zetong Yang Li Chen Yanan Sun Hongyang Li OpenDriveLab and Shanghai AI Lab https://github.com/OpenDriveLab/ViDAR

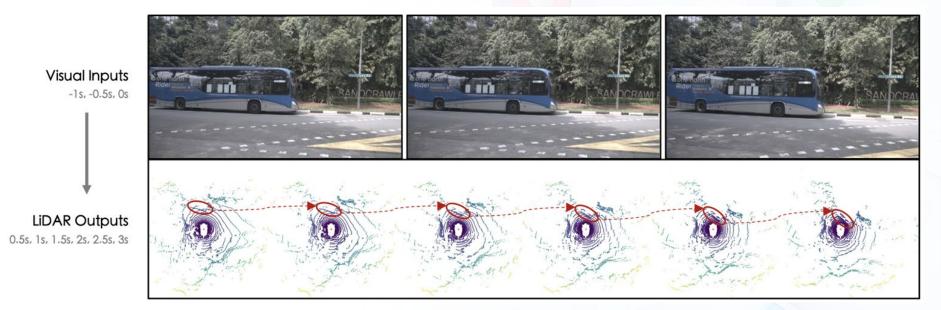
ViDAR | At a Glance

Summary: Training multimodal world model by **Visual Point Cloud Forecasting** and boosting **End-to-End Autonomous Driving**.



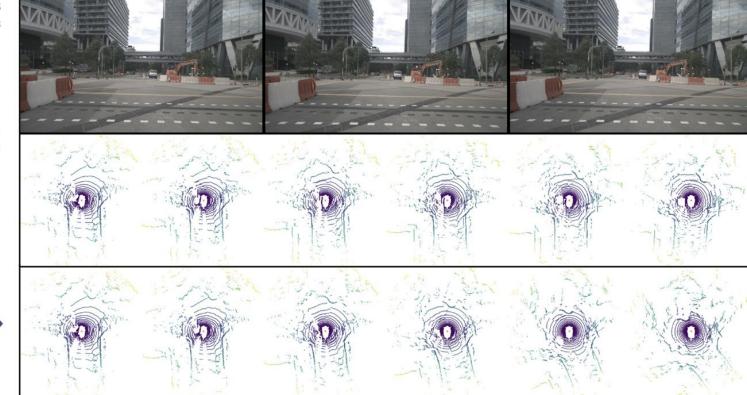


ViDAR | Future Prediction Experiments



ViDAR | Different Ego Control Experiments

Visual Inputs -1s, -0.5s, Os



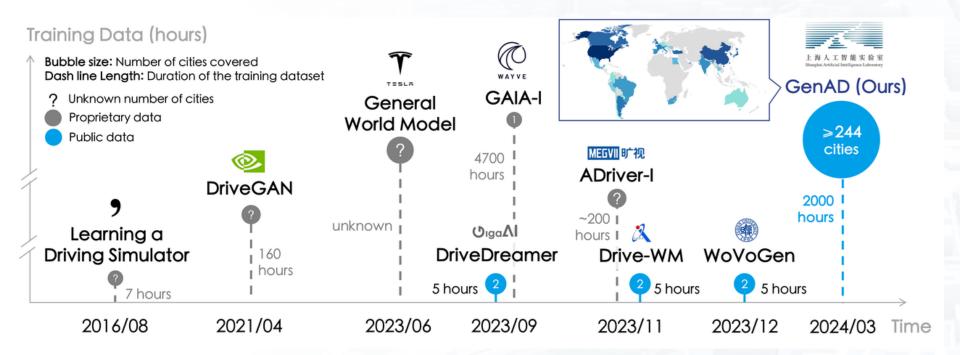
LiDAR Outputs 0.5s, 1s, 1.5s, 2s, 2.5s, 3s

> Go Forward

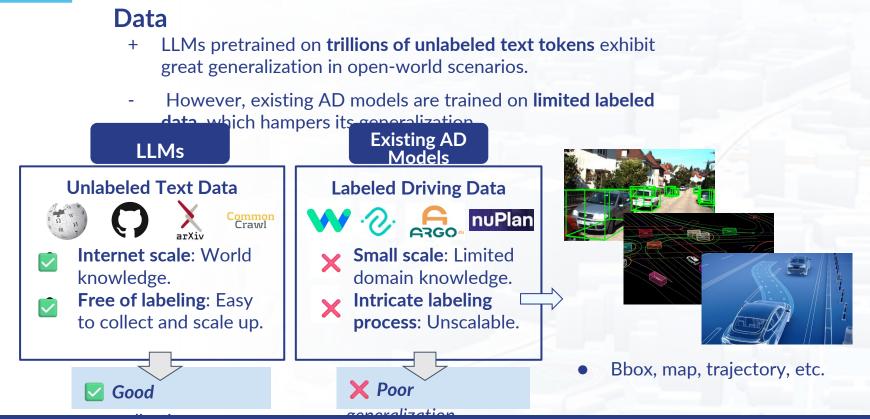
Open AriveLab

How to scale up the autonomous driving models? GenAD: Generalized Predictive Model for Autonomous Driving

OpenDV Benchmark



Motivation | What Makes for Generalized AD Model?



Motivation | What Makes for Generalized AD Model?

Task / Objective:

- Supervised Learning
 - Hard to scale without sufficient labeled data

• NUSCENES

No accessible labeled data

UniAD

UniAD-XL?

- Self-supervised Learning on Feature Space
 - Scalable with developed VLMs for supervision. (e.g., DINOv2)
 - Focused on specific objects (e.g., centered, large ones)
 - y Ignoring details. However, the devil is in the details, especially for driving

- Feature map visualization from DINOv2
- Focusing on main objects, while **ignoring fine-grained details**

Open 🔁 rive Lab

Motivation | What Makes for Generalized AD Model?

Our finding: Data: Massive online driving videos + Task / Objective: Video Prediction → Scalable and generalized AD Model

Scalable Data (easy to collect from the web) "Self-supervised" Manner

No 3D labeling needed

Good

Detail preservation

Learning world knowledge and how to drive inherently

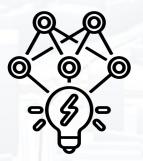
Massive YouTube videos, collected worldwide

Introducing GenAD, The First Video Generative Model as World Simulator For Autonomous Driving

Generalized Predictive Model for Autonomous Driving

Jiazhi Yang^{1*} Shenyuan Gao^{2,1*} Yihang Qiu^{1*} Li Chen^{3,1†} Tianyu Li¹ Bo Dai¹ Kashyap Chitta^{4,5} Penghao Wu¹ Jia Zeng¹ Ping Luo³ Jun Zhang^{2†} Andreas Geiger^{4,5‡} Yu Qiao^{1‡} Hongyang Li^{1†}

¹ OpenDriveLab and Shanghai AI Lab ² Hong Kong University of Science and Technology ³ University of Hong Kong ⁴ University of Tübingen ⁵ Tübingen AI Center



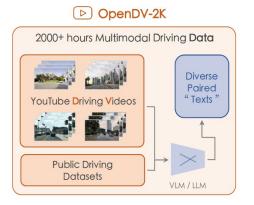
Data

Network Architecture Tasks

Open 🔁 rive Lab

GenAD | At a Glance

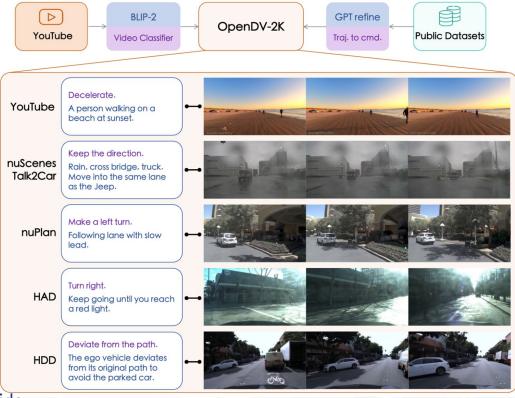
Summary: Training a **billion-scale video prediction model** on **web-scale driving videos**, to enable its **generalization across** a wide spectrum of **domains and tasks**.



Data | OpenDV-2K Dataset

- Multi-modal and Multi-source Dataset
 - Paired with textual **command** and **context** (annotated by VLMs).
 - Sourced from both **online videos** and **public datasets** for diversity.

Massive YouTube videos, collected worldwide

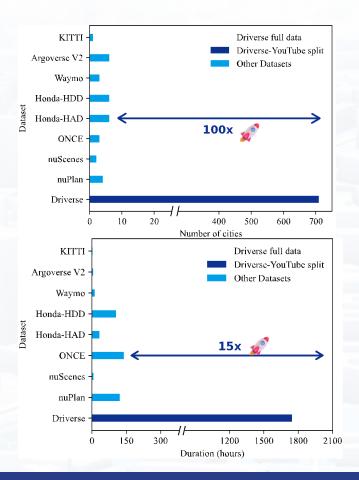


Data | OpenDV-2K Dataset

- Largest dataset up-to-date for autonomous driving
- 2059 hours, 709 areas

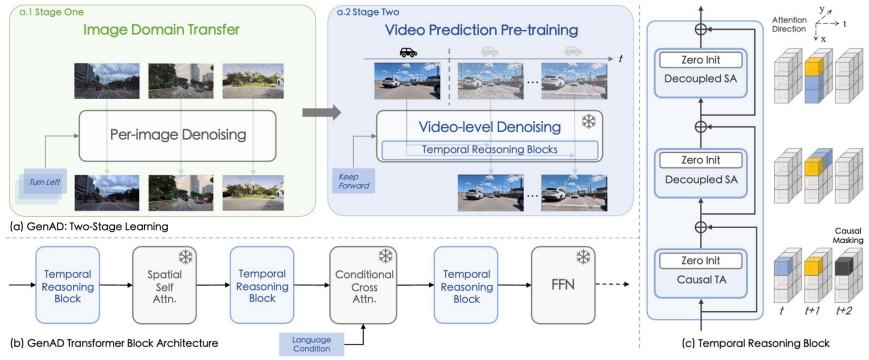
	Dataset	Duration (hours)	Front-view Frames	Geographic Countries	Diversity Cities	Sensor Setup
×	KITTI [14]	1.4	15k	1	1	fixed
×	Cityscapes [10]	0.5	25k	3	50	fixed
×	Waymo Open* [41]	11	390k	1	3	fixed
×	Argoverse 2* [45]	4.2	300k	1	6	fixed
1	nuScenes [6]	5.5	241k	2	2	fixed
1	nuPlan [7]	120	4.0M	2	4	fixed
1	Talk2Car [12]	4.7	-	2	2	fixed
1	ONCE [32]	144	7M	1	-	fixed
1	Honda-HAD [23]	32	1.2M	1	-	fixed
1	Honda-HDD-Action [38]	104	1.1M	1	-	fixed
1	Honda-HDD-Cause [38]	32	-	1	-	fixed
-	OpenDV-YouTube (Ours) OpenDV-2K (Ours)	1747 2059	60.2M 65.1M	$\begin{vmatrix} \geq 40^{\dagger} \\ \geq 40^{\dagger} \end{vmatrix}$	≥709† ≥ 709 †	uncalibrated uncalibrated

OpenDV-2K (Ours) 💉



Model | Video Prediction Model for Driving

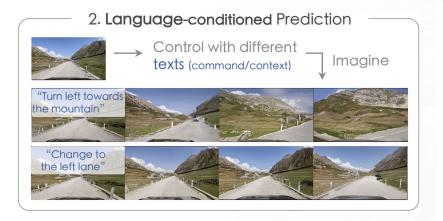
- GenAD (5.9B) = SDXL (2.7B) + Temporal Reasoning Blocks (2.5B) + CLIP-Text (0.7B)
- Tuning the image generation model (SDXL) into a highly-capable video prediction model



Tasks | Zero-shot Generalization (Video Prediction)

Zero-shot video prediction on unseen datasets including Waymo, KITTI and Cityscapes

Tasks | Language-conditioned Prediction



"Drive slowly down at intersection, several barriers beside the road"

"Turn right, some parked cars, a parking lot"

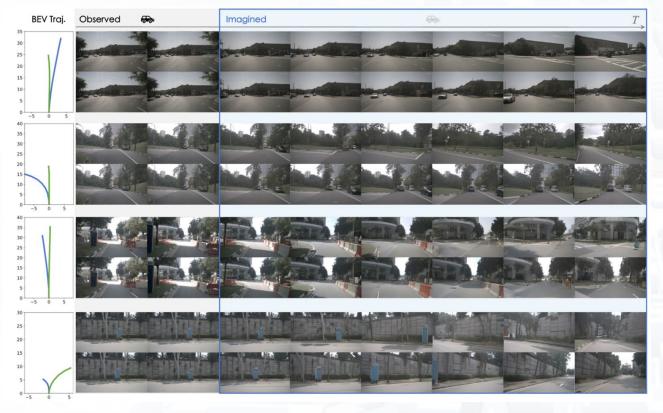
Instruct the future with **free**-form texts.

Tasks | Action-conditioned Prediction (Simulation)

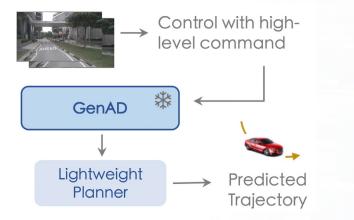
Method	Condition	nuScenes Action Prediction Error (↓)		
Ground truth	-	0.9		
GenAD	text	2.54		
GenAD-act	text + traj.	2.02		

Table 4. **Task on Action-conditioned prediction**. Compared to GenAD with text conditions only, GenAD-act enables more precise future predictions that follow the action condition.

Simulate the future differently conditioned on **future trajectory.**



Tasks | Planning

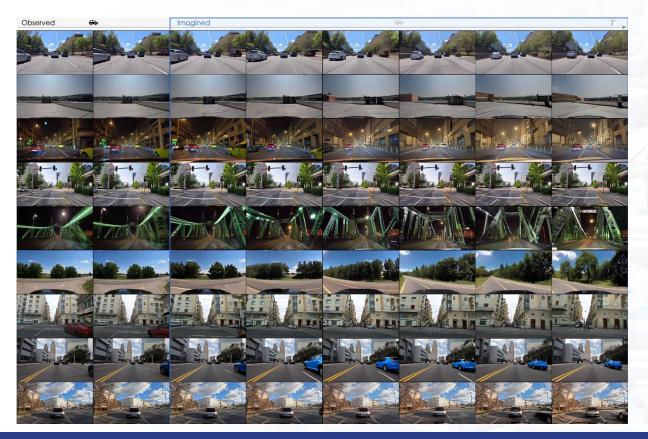


Method	# Trainable	nuScenes		
Method	Params.	ADE (\downarrow)	FDE (\downarrow)	
ST-P3* [20]	10.9M	2.11	2.90	
UniAD* [22]	58.8M	1.03	1.65	
GenAD (Ours)	0.8M	1.23	2.31	

Table 5. Task on Planning. A lightweight MLP with *frozen* GenAD gets competitive planning results with $73 \times$ fewer trainable parameters and front-view image alone. *: multi-view inputs.

Training process **speeds up by 3400 times** compared to UniAD (CVPR Best Paper).

More Visualizations on Video Prediction



DriveLM: Driving with Graph Visual Question Answering

https://github.com/OpenDriveLab/

DriveLM

Trending: Driving + Language

Trending: Driving + Language

Dataset	Source Dataset	# Frames	Avg. captions / QA per annotated frame	Total captions / QA in Perception	Total captions / QA in Prediction	Total captions / QA in Planning	Logic among captions/QA pairs
nuScenes-QA [47]	nuScenes	34,149	13.5	460k**	×	×	None
nuPrompt [66]	nuScenes	34,149	1.0	35k*	×	×	None
HAD [31]	HDD	25,549	1.8	25k	×	20k	None
BDD-X [30]	BDD	26,228	1	26k	X	x	None
DRAMA [40]	DRAMA	17,785	5.8	85k	X	17k	Chain
Rank2Tell [51]	Rank2Tell	5,800	-	-	×	-	Chain
DriveLM-nuScenes	nuScenes	4,871	91.4	144k*	153k	146k	Graph
DriveLM-CARLA	CARLA	183,373	20.5	2.46M**	578k**	714k**	Graph

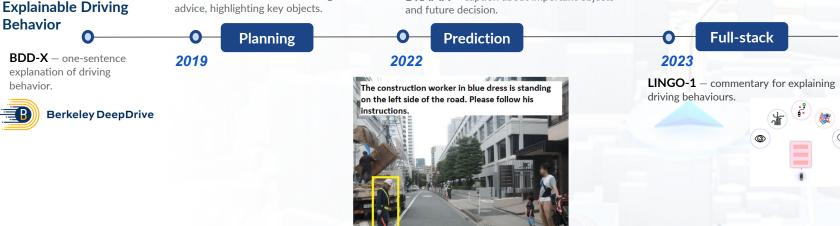
Table 1. Comparison of DriveLM-nuScenes & -CARLA with Existing Datasets. * indicates semi-rule-based labeling (w/ human annotators), ** indicates fully-rule-based (no human annotators), and - means publicly unavailable. DriveLM-Data significant advances annotation quantity, comprehensiveness (covering perception, prediction and planning), and logic (chain to graph).

Rank2Tell - reasoning for the rank of objects' importance level.

Talk2Car – a description of how to reach the goal point from current position.

DRAMA – caption about important objects and future decision.

DriveLM — perception-predictionplanning driving description with graph-of-thought.



For now, language into driving is marginal (trivial). Serves only as a "commentator". We haven't verified (or seen) the effectiveness.

HAD – human-to-vehicle driving

Open AriveLab

Behavior BDD-X – one-sentence explanation of driving

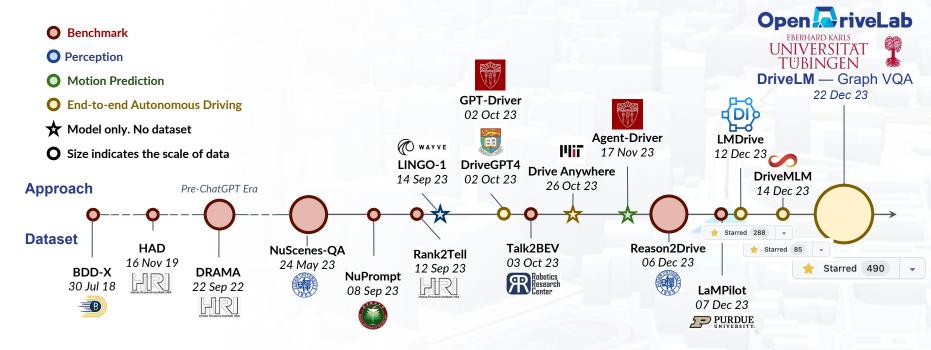
behavior.

https://arxiv.org/abs/2312.14150

DriveLM: When LLMs meet Driving

In collaboration with 美团

- Largest and high-quality benchmark, up to date.

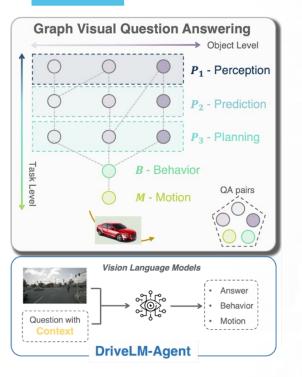


DriveLM: Driving with Graph Visual Question Answering

Chonghao Sima^{4,1*} Katrin Renz^{2,3*} Kashyap Chitta^{2,3} Li Chen^{4,1} Hanxue Zhang¹ Chengen Xie¹ Ping Luo⁴ Andreas Geiger^{2,3} Hongyang Li¹ ¹ OpenDriveLab, Shanghai AI Lab ² University of Tübingen ³ Tübingen AI Center ⁴ University of Hong Kong

DriveLM - Introduction

- Generalization and Interactivity in Autonomous Driving.
 - Generalized to **unseen** sensor configuration and objects.
 - Regional / Global (e.g. European) regulations require explainability through interaction.
- Recent success in Vision Language Models.
 - Good **reasoning** ability, enabled by LLM.
 - **No BEV** representation, since human do not rely on BEV.
- Why VLM in AD?
 - Reasoning ability helps generalization.
 - Language output provide interactivity.



- The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly.

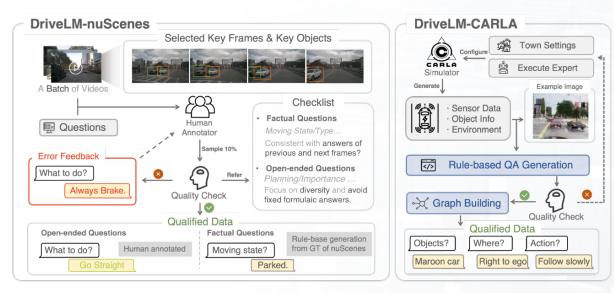
- The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly.

- The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly.



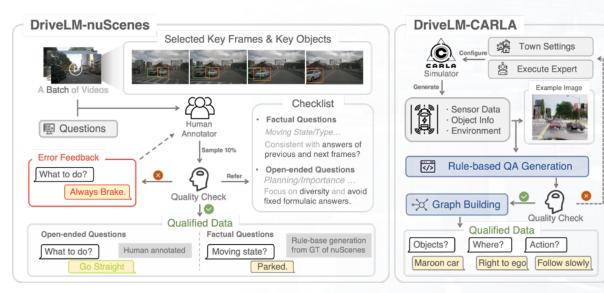
- The critical part is **Graph Visual QA**, upon which we build **data**, model and metrics accordingly.

DriveLM - Data



- To ensure the **data quality**, we introduce human annotation with multi-round quality check in nuScenes.
- To scale-up annotation, we adopt auto-labelling in CARLA.

DriveLM - Data



- To ensure the **data quality**, we introduce human annotation with multi-round quality check in nuScenes.
- To scale-up annotation, we adopt auto-labelling in CARLA.

Diversity matters, spanning from perception to prediction and planning.

DriveLM - Experiments

Method	Behavior Context	Motion Context	B Acc. ↑	Sehavior (<i>E</i> Speed ↑	3) Steer ↑	Motio ADE↓	n (M) FDE \downarrow
Command Mean	-	-	-	-	-	7.98	11.41
UniAD-Single	-	-	-	-	-	4.16	9.31
BLIP-RT-2	-	-	-	-	-	2.78	6.47
	None	В	35.70	43.90	65.20	2.76	6.59
DriveLM-Agent	Chain	B	34.62	41.28	64.55	2.85	6.89
	Graph	В	39.73	54.29	70.35	2.63	6.17

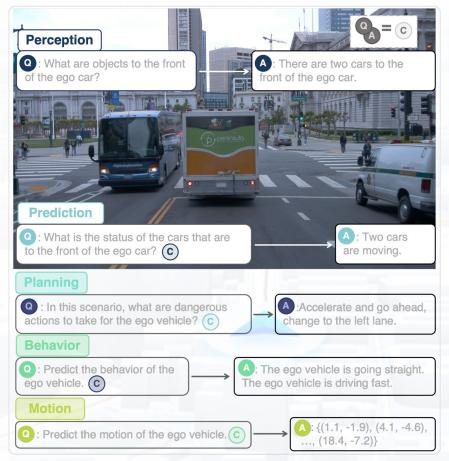
 Trained on DriveLM-Data (nuScenes-based), DriveLM-Agent (ours) gains better zero-shot ability on Waymo scenarios, overpassing other methods by a large margin.

DriveLM - Experiments

Method	Behavior	Motion	B	ehavior (A	Motion (M)		
	Context	Context	Acc. \uparrow	Speed ↑	Steer ↑	ADE \downarrow	$FDE \downarrow$
Command Mean	-	-	-	-	-	7.98	11.41
UniAD-Single	-	-	-	-	-	4.16	9.31
BLIP-RT-2	-	-	-	-	-	2.78	6.47
	None	В	35.70	43.90	65.20	2.76	6.59
DriveLM-Agent	Chain	B	34.62	41.28	64.55	2.85	6.89
	Graph	B	39.73	54.29	70.35	2.63	6.17

 Trained on DriveLM-Data (nuScenes-based), DriveLM-Agent (ours) gains better zero-shot ability on Waymo scenarios, overpassing other methods by a large margin.

> - Qualitative result shows that DriveLM-Agent does **understand the unseen scenarios** in some



DriveLM - Limitation

Driving-specific Inputs

DriveLM-Agent cannot handle common setting such as LiDAR or multi-view images as input, limiting its information source.

Closed-loop Planning

DriveLM-Agent is evaluated under an openloop scheme, while closedloop planning is necessary to see if it can handle corner cases.

Efficiency Constraints

Inheriting the drawbacks of LLMs, DriveLM-Agent suffers from long inference time, which may impact practical implementation.

ELM: Embodied Understanding of Driving Scenarios

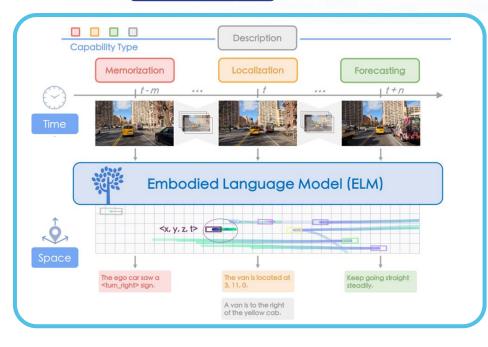
Embodied Understanding of Driving Scenarios

 Yunsong Zhou^{1,2*} Linyan Huang^{1*} Qingwen Bu^{1,2*} Jia Zeng¹ Tianyu Li^{1,3} Huang Qiu⁴ Hongzi Zhu^{2†} Minyi Guo² Yu Qiao¹ Hongyang Li^{1†}
 ¹ OpenDriveLab, Shanghai AI Lab ² Shanghai Jiao Tong University ³ Fudan University ⁴ University of California, Riverside

ELM - Introduction

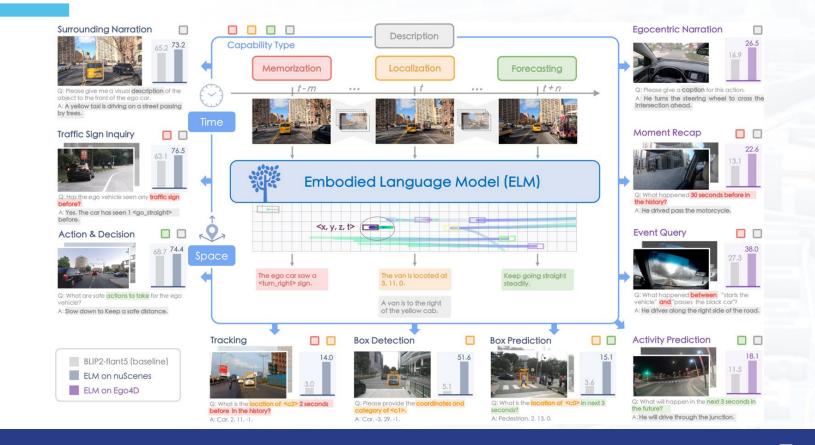
- Embodied understanding.
 - interacting with environments & reasoning via common sense.
- Vision-Language Models.
 - 2D domain: description
- Expanding Vanilla VLMs to Driving Scenes.
 - Task: embodied understanding of driving scenarios.
 - Capabilities: description, **localization**, **memorization**, **forecasting**.
 - Model: ELM with long-horizon space and time.
 - Benchmark: A spectrum of tasks in an embodiment setting.

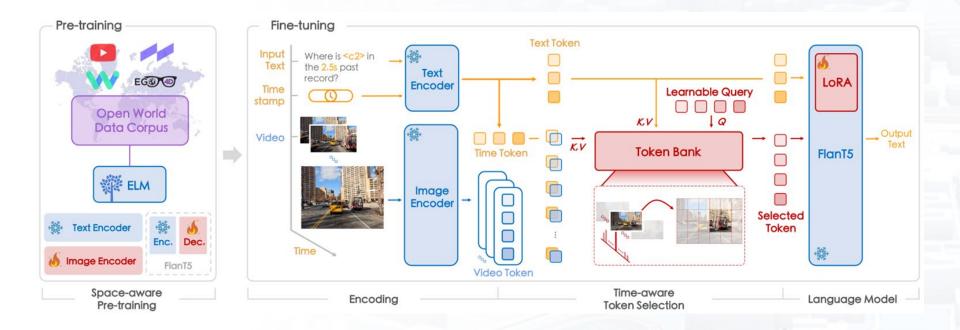
At A Glance



- ELM is an **embodied language model** for understanding the long-horizon driving scenarios in **space** and **time**.
- We expand a wide spectrum of **new tasks** to fully leverage large language models in an embodiment setting.

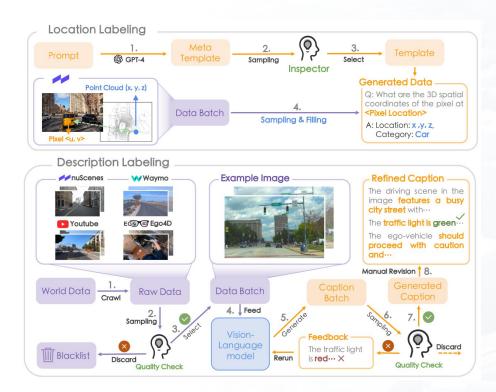
At A Glance





Pipeline

Annotation - Quality check



Examples of Description Labels

Q: What is the unusual about the driving scene?

Q: Please describe the driving scene.

A: The scene shows a busy city street with a **construction** site on the side of the road. There is a traffic light visible in the background. The unusual element in this scene is the presence of a construction site, which may cause traffic disruptions or delays.

Q: How should the ego-vehicle drive at this point?

A: The ego-vehicle should follow the traffic light's instructions and wait for the light to turn green before proceeding.

A: The scene is a road with a curvy, winding path, surrounded by trees and hills. The road is empty, with no other vehicles visible. The sun is setting, casting a warm glow over the scene.

Q: Are there any potential dangers in the scenario?

A: The ego-vehicle should continue driving through the intersection, following the traffic light's instructions. It is important to be cautious and attentive to the pedestrians to ensure safety for all involved.

	•	
Exp	perim	ents

Methods	Trac	king	Box De	etection	Box Pr	ediction	Traffi	c Sign In	quiry	Surrou	nding Na	rration	Actio	n & De	cision
Methods	Pr@1	Pr@2	Pr@1	Pr@2	Pr@1	Pr@2	С	R	В	С	R	В	C	R	В
BLIP2-opt [27]	0.1	0.1	0.1	0.2	0.2	0.5	23.0	26.9	20.5	8.1	19.7	21.2	8.4	11.5	11.1
BLIP2-flant5 [27]	3.0	6.0	5.1	10.5	3.6	6.3	63.1	39.4	31.4	65.2	64.9	27.9	68.7	71.4	43.1
LLaMA-Ada. [17]	6.1	10.5	8.3	14.9	7.5	12.5	<u>68.3</u>	66.6	<u>61.6</u>	<u>67.0</u>	77.5	60.1	72.3	76.8	64.7
LLaVA [32]	5.5	9.3	28.5	31.2	6.1	10.2	51.1	58.5	50.8	64.9	64.6	<u>41.2</u>	64.4	62.4	<u>57.9</u>
Otter [26]	10.0	17.2	<u>41.8</u>	<u>46.9</u>	<u>8.9</u>	<u>15.8</u>	62.8	41.1	32.4	60.0	64.2	13.3	69.2	73.2	53.0
VideoChat [28]	0.4	0.9	0.1	0.3	0.1	0.2	25.3	21.9	11.7	21.7	29.2	12.2	29.6	33.2	13.1
Vid-ChatGPT [36]	0.1	0.6	0.1	1.0	0.3	1.2	49.6	57.1	48.6	61.0	69.6	37.2	53.6	58.5	43.5
ELM (Ours)	14.0	23.3	51.6	56.9	15.1	24.4	76.5	71.2	63.9	73.2	78.7	29.8	74.4	83.3	41.2

(a) nuScenes. We outperform the best previous methods on most metrics across the six tasks on nuScenes which validates the generality of our model.

Methods	Mo	ment Re	ecap	Ev	ent Que	ery	Egoce	entric Na	arration	Activ	ity Pred	iction	Methods	# norom
Wethous	C	R	В	С	R	В	С	R	В	C	R	В	Wiethous	# param
BLIP2-opt [27]	1.2	8.9	6.8	7.8	28.4	14.7	5.2	19.8	10.7	2.7	18.7	9.6	BLIP2-opt	2.7B
BLIP2-flant5 [27]	13.1	31.9	12.5	27.3	33.0	16.6	16.9	33.5	15.4	11.5	31.2	11.3	BLIP2-flant5	2.7B
LLaMA-Ada. [17]	11.2	30.2	12.3	37.5	47.2	28.1	18.4	34.2	15.3	<u>13.1</u>	31.2	12.8	LLaMA-Ada.	7B
LLaVA [32]	9.6	28.3	12.1	39.8	<u>44.6</u>	29.9	6.5	28.2	11.6	8.4	28.0	13.0	LLaVA	7B
Otter [26]	11.4	29.6	10.5	27.1	38.3	19.1	14.1	31.4	13.9	11.1	29.4	10.3	Otter	7B
VideoChat [28]	13.2	32.5	13.8	34.5	42.2	26.4	<u>20.7</u>	<u>35.0</u>	17.6	12.1	32.4	14.1	VideoChat	7B
Vid-ChatGPT [36]	10.0	31.1	13.3	27.9	36.5	20.9	10.2	21.7	10.4	9.4	30.5	12.6	Vid-ChatGPT	7B
ELM (Ours)	22.6	36.7	19.4	<u>38.0</u>	43.1	<u>27.6</u>	26.5	37.7	<u>16.9</u>	18.1	34.1	17.0	ELM (Ours)	2.7B

(b) Ego4D. We extended the model to Ego4D dataset and verified the generality of our token bank module on four tasks. (c) Adopted LLM params.

Q: Determine the 3D location in the scene of the 2D pixel at <c, 865 505.9> 3 seconds later? BLIP2-T5: Location: [1.18, 29.96, 1.56], Car

Ours: Location: [0, 38, 0], Pedestrian

GT: Location: [-0.12, 38.45, 0.05], Pedestrian

Q: Has the ego vehicle seen any traffic sign before?

BLIP2-T5: There is no traffic sign in the scene.

Ours: The ego vehicle has seen 1 go_straight, and 1 turn_right before. GT: The ego vehicle has seen 1 go_straight, and 1 turn_right before.

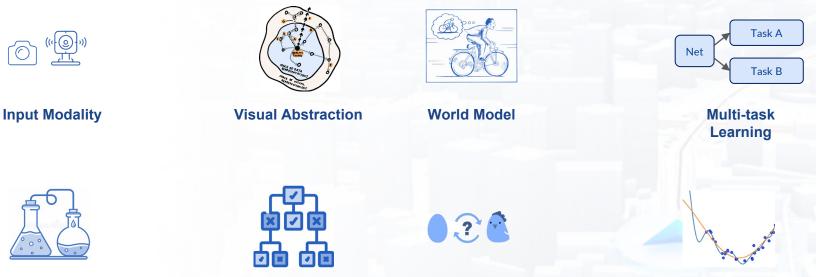
C: What happened 12.1 seconds before? BLIP2-T5: C stirs the meat in the frying pan Ours: C moves the meat from the frypan to the plate GT: C moves the meat from the frypan to the plate

One-page Takeaway

- End-to-end Autonomous Driving
 - Challenge: Generalization & Explainability
 - Recent trend: use vision language model to **embed "world knowledge"** to solve the challenges.
- DriveLM: Driving with Graph Visual Question Answering
 - Use Graph VQA as a proxy task to mimic human's driving logic
 - Some good result under zero-shot setting, but still far from claiming good generalization.
- ELM: Embodied Understanding of Driving Scenarios
 - Revive driving scene understanding by delving into **embodied** settings, along with capacities, tasks, and rubrics.
 - Expand vanilla VLMs to process long horizon **space** and **time** (open-world data & module design).

End-to-end Autonomous Driving Key Challenges

Challenges in End-to-end Autonomous Driving



Policy Distillation

Interpretability

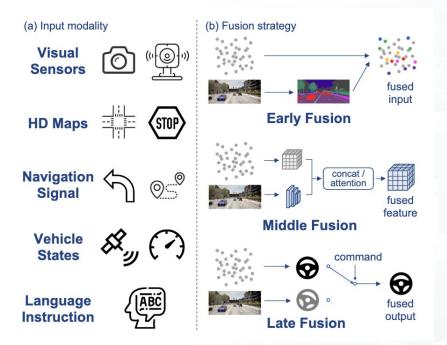
Causal

An Overview

Confusion

Robustness and Generalization

挑战 (1/8) - Input Modality



- Early Fusion: Combine sensory information before feeding it into the feature extractor
- Middle Fusion: Separately encode inputs and then combining them at the feature level
- Late Fusion: Combine multiple results from multi-modalities (Worst Performance)

Current methods first pre-train the visual encoder of the network using proxy pre-training tasks.

There inevitably exist possible **information bottlenecks** in the learned representation, and redundant information unrelated to driving decisions may be included.

<mark>挑战(</mark> 3/8)- W	/orld Model	States	Cost / Reward
Configurator Short-term memory World Model Perception Actor Critic Cost		 Ego agent Other objects (static) Background environment 	Success/FailIntermediate Reward
In a nutshell: State of the world at time t: s(t) Imagined action taken at time t: ar Causal prediction: s(t+1) = g(s(t),a(t))	Autonomous Driving	 Ego-vehicle Other vehicles, pedestrians, cyclists, etc (moving) Background environment 	 Collision Comfort Forward etc
where g() is the world model. Such a *causal* world models ena	bles planning.	Complicated!	Hard to define!
		A video predi	ctor?

挑战 (4/8) - Multi-task Learning

Multi-task learning (MTL) : Jointly perform several related tasks based on a shared representation through separate branches/heads.

Pros

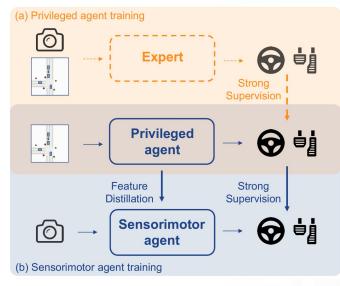
- Significant computational cost reduction
- Related domain knowledge is shared within the shared model

Challenges

- The optimal combination of auxiliary tasks and the appropriate weighting of their losses
- Construct large-scale datasets with multiple types of aligned and highquality annotations

挑战 (5/8) - Policy Distillation

The popular "Teacher-Student" IL Paradigm



Expert: Ground Truth (GT) to
 action
 Gap
 Student: Image to action

- Expert (by RL/IL/hand-rule, gt input)
 - Not/Can't perfect, even for a certain benchmark

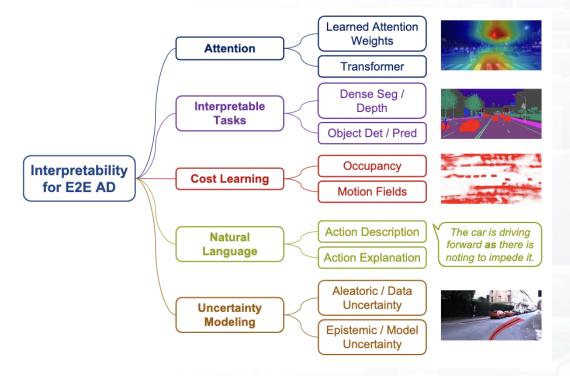
Method	Input	Driving Score ↑		
Transfuser [39, 8]	Camera + LiDAR	31.0		
LAV [3]	Camera + LiDAR	46.5		
Student Model + Frozen Roach	Camera + LiDAR	8.9		
Roach [55]	Privileged Info.	74.2		
Roach + Rule [50]	Privileged Info.	87.0		

From DriveAdapter work, ICCV 2023

- What for or How to Distillation
 - Critical features
 - Input gap Casual confusion

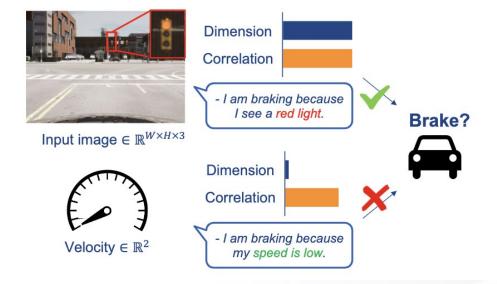
挑战 (6/8) - Interpretability

Summary of the different forms of interpretability



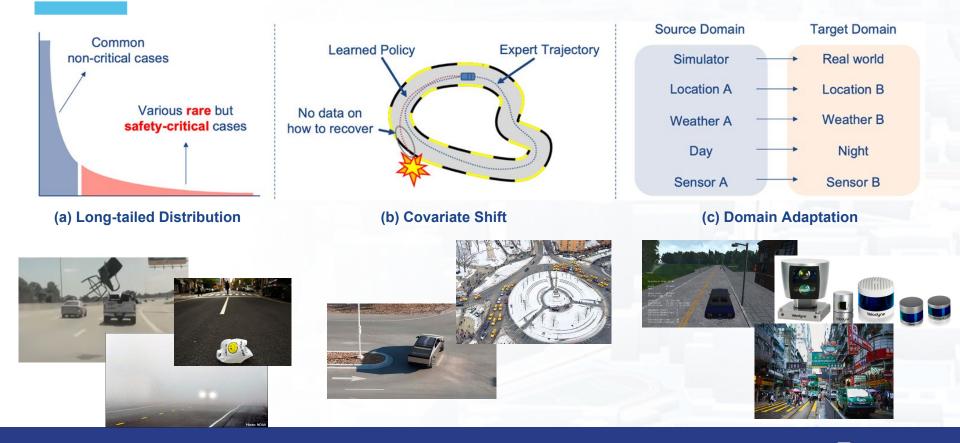
They aid in human comprehension of the **decision-making processes** of end-to-end models, **perception failures**, and the **reliability of the outputs**.

挑战 (7/8) - Causal Confusion



- Driving is a task that exhibits temporal smoothness, which makes past motion a reliable predictor of the next action.
- However, methods trained with multiple frames can become overly reliant on this shortcut. This is referred to as the copycat problem and is a manifestation of causal confusion.

挑战 (8/8) - Robustness and Generalization



End-to-end Autonomous Driving Future Work

Gap between The Rest and SORA

- High-quality Video Data Need massive collection, including
 - Long duration(> 60s), high resolution, large motion, comprehensive scenarios
 - Existing **public video datasets are inadequate** in both quality and duration. (e.g., webvid 10M, internvid, vimeo 25M)
 - Film data is a good source. (movies, documentaries, animations, etc.)
 - Need to build from
- Spatial-temporal VAE scratch
 - Videos are highly redundant in temporal dimension,
 - thus should be **compressed** for efficiency.
 - The key ingredient to long video generation.
 - SVD (<5s) \rightarrow SORA (60s)

Public, DiT (But need to

- be extended to video
- Diffusion Model Architecture
 Version)
 - Temporal attention alone is not efficient for modeling large motions.
 - We need (global) spatial-temporal attention, which requires more compute but yields better regults after scaling. Not available, but have some weaker public
- Highly-capable Video Captioner solutions
 - Annotating **accurate and expressive captions** for each video clip.
 - Public solutions: LLaVA, VideoChat, GPT-4.

- image → video
 1024 x 576 x 4s x 6Hz
- Model Spatial VAE + UNet Training data 152M (0.15
 - 152M (0.15B) video clips (low quality, short duration, small motion, simple scenarios), mainly crawled from You

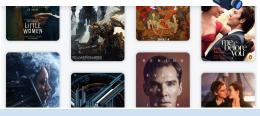
Most of YouTube Videos are noisy, short-period, and in small motion.

🤗 long duration, large motion, complex scenario

text/image/video \rightarrow video 1920 x 1080 x <u>60s x 30Hz</u>

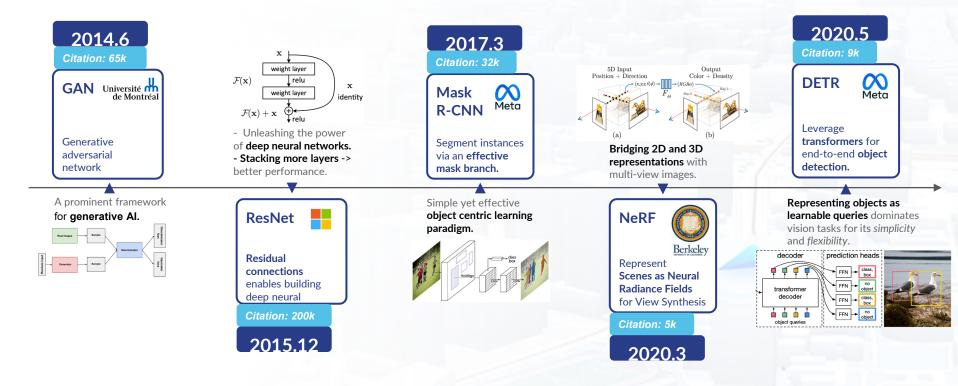
> Owe to the compression by spatial-temporal VAE Spatial-Temporal VAE + DiT (More scalable)

>> 1B video clips (approx.) (high quality, long duration, large motion, comprehensive scenarios)



We may need film data, which are long-period, highly-dynamic, and highly-aesthetic. (movies, documentaries, animations, etc.)

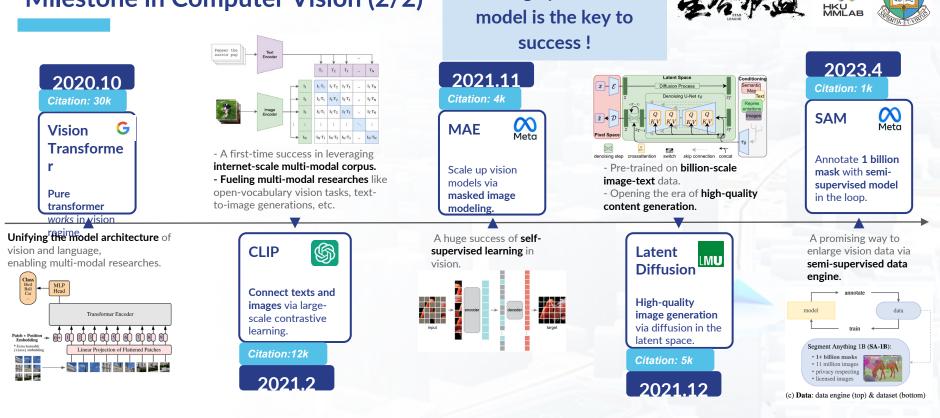
Milestone in Computer Vision (1/2)



Open AriveLab

Towards AGI in Autonomous Driving - Dr. Hongyang Li

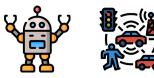
Milestone in Computer Vision (2/2)



Scaling up data and

粘明 物 速

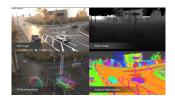
Towards Intelligent, Reliable and Generalizable Autonomy



Data-centric Pipeline

Data Collection

Data Generation



Pre-training DriveCore

Foundation Model

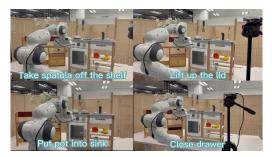
Integrated and General AGI for autonomous driving

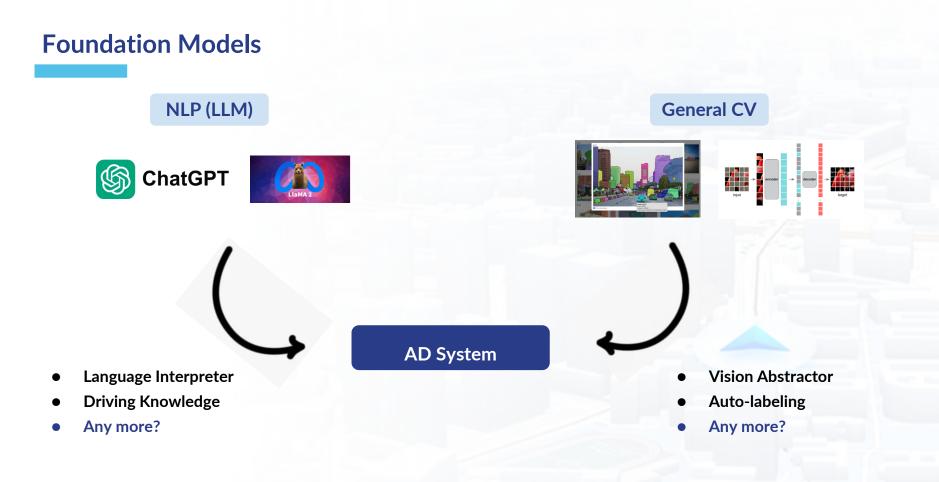
How to formulate? What's the objective goal? GenAD (our on-going project)

Applications

Autonomous Driving

Embodied AI

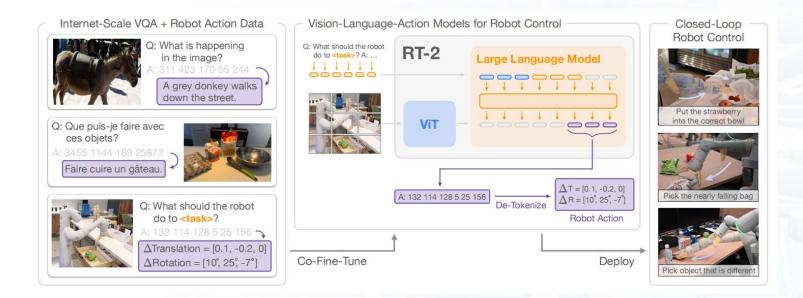




Foundation Models (cont'd)

NLP (LLM) **General CV** decoder ChatGPT input G configurator World Model Perception action percept Multimodality • Intelligence • **AD** System Generalization •

Insight from Robotics / Embodied AI



- How vision-language models trained on Internet-scale data can be incorporated directly into **end-to-end robotic control**
- Goal: to **boost generalization** and enable emergent semantic reasoning

Key ingredient(s): huge amount of data (not public) + language prompt to dissect tasks

- Robotic tasks naturally fits into language at dissecting tasks step by step using language (prompt).
- Is it the <u>right way</u> to open the language tool box as does in <u>Robotics</u> for Autonomous Driving?

Open AriveLab

Analogy to General Domains in CV/NLP/Robotic

	Domain	Method Abbreviation	Institute / Time	Data Scale	Public?
General	NLP	GPT-4	OpenAI / 2023.3	13T tokens	×
Large	(LLM)	LLaMA 2	Meta / 2023.7	2T tokens	
Models	Vision	ViT-22B G	Google / 2023.2	4B images	×
	Vision Language (LLM backend)	BLIP-2	Salesforce / 2023.1	129M images-text pairs	
		DriveAGI (GenAD) 🔼	OpenDriveLab / 2023.11	2000 h videos (public)	
Industrial	Autonomous	GAIA-1	Wayve / 2023.6	4700 h videos	×
Large Models	nuScenes: 4.5h	World Model Demo	Tesla / 2023.6	Unknown (Large-scale)	×
(Application)	Robotics	PaLM-E	-E Google / 2023.3	Unknown (Large-scale)	×
	(LLM backend)	RT-2	DeepMind / 2023.7	1B img-text pairs / 13 robots / 17 months	×

If taken seriously for AD: lots of compute (at least 200 A100s) + massive amount of data (at least 10k hours of diverse, high-quality data)

Open AriveLab

Trending: Recent Work on World Model

From simulated agents to realworld driving systems

Trending: Recent Work on World Model

World model to generate videos of the driving scenario. **Then what? Is it useful for downstream tasks?** (To be validated)

Open AriveLab

Personal Take on Foundation Models into Autonomous **Driving**

End-to-end Auto Driving

Pros:

- 1. Scalability
- 2. Global optimization
- 3. Easy-to-embed Infra

For:

- \rightarrow Generalization/Robustness
- \rightarrow Performance
- \rightarrow Feasibility for deployment

Personal Take on Foundation Models into Autonomous

Driving

Research **SOpenAI** Video generation models as world simulators

Mind-blowing Part

End-to-end Auto Driving

Pros:

- 1. Scalability
- 2. Global optimization
- 3. Easy-to-embed Infra

For:

- \rightarrow Generalization/Robustness
- $\rightarrow \text{Performance}$
- \rightarrow Feasibility for deployment

Weakness Samples

Some rumors:

- 0.8M GPUs
- 50B video clips from Microsoft (ref: Youtube has 13B videos)
- This a side project from OpenAI

Personal Take on Foundation Models into Autonomous

Driving

Research SOpenAI Video generation models as world simulators Mind-blowing Part

End-to-end Auto Driving

Pros:

- 1. Scalability
- 2. Global optimization
- 3. Easy-to-embed Infra

For:

- \rightarrow Generalization/Robustness
- $\rightarrow \text{Performance}$
- \rightarrow Feasibility for deployment

Weakness Samples

Some rumors:

- 0.8M GPUs
- 50B video clips from Microsoft (ref: Youtube has 13B videos)
- This a side project from OpenAI

Towards Intelligent, Reliable and Generalizable System										
C	Data-driven Alg-driven	Metric- driven								
	Scaling data in all levels with self-supervised learning	า → <i>Interaction</i> between								
Simulating the physical world agents and										
	Rule of thumbs from foundation models	env/physical world → Pixel-level <i>not</i> suffice								
	Authentic evaluation metric	Actions require latent abstractions. Depends								

 Guarantee reliability and on task. safety.

End-of-Lecture

Open riveLab 117

0

主流工作选讲 - Part 3

End-to-end Autonomous Driving

GAIA-1

End-to-end Autonomous Driving

GAIA-1 | Motivation

Want to solve the problem:

How to predict the various potential outcomes that may emerge in response to the vehicle's actions as the world evolves?

Current limitations:

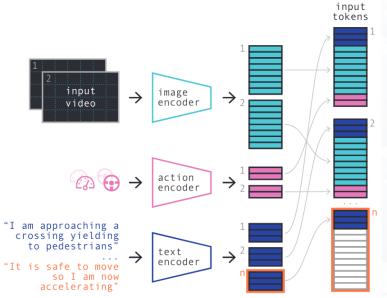
- Labeled data: hard to obtain at scale
- **Simulated data:** low-dimensional representations; hard to capture the complexities of real-world

GAIA-1 can:

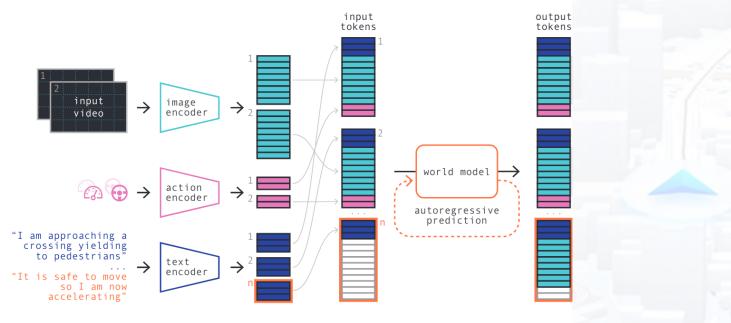
- Combine world models and generative video generation
- Ensure the realism of generative video models and learn meaningful representations

GAIA-1 | Method

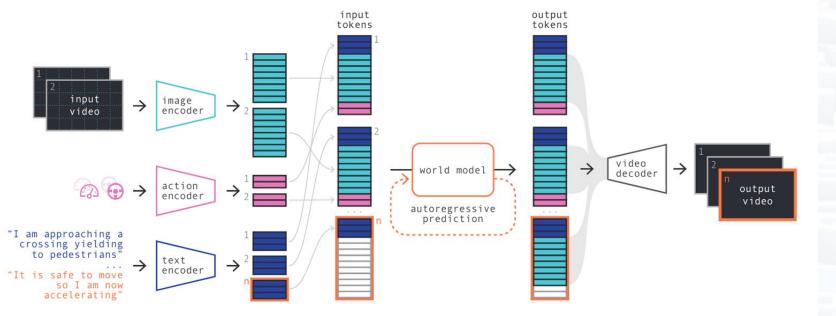
首先,将来自所有输入模态(视频、文本、动作)的信息编码为一个通 用的表示,图像、文本和动作被编码为一系列token



GAIA-1 | Method

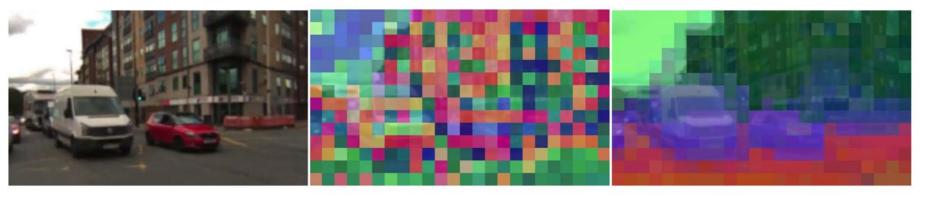


最后,视频解码器以更高的时间分辨率将预测的图像token映射回像素空间



Open PriveLab 123

In **Image Tokenizer**, GAIA-1 guides the compression towards meaningful representations by regressing to the latent features of a pre-trained **DINO** model.



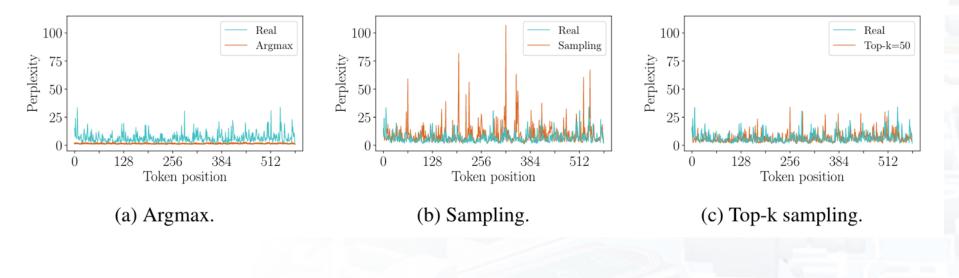
(a) Input image

(b) Base VQ-GAN tokens

(c) DINO-distilled tokens

Open PriveLab 124

To encourage **diversity** as well as **realism**, GAIA-1 employs **top-k sampling** to sample the next image token from the top-k most likely choices.



GAIA-1 | Experiment

Images generated by GAIA-1

EgoStatus

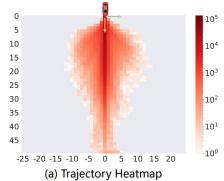
End-to-end Autonomous Driving

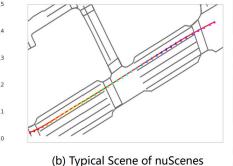
EgoStatus | Motivation

Current prevailing end-to-end autonomous driving methods commonly use **nuScenes** for **open loop evaluation of their planning behavior.**

However:

• **NuScenes** dataset, characterized by **relatively simple driving scenarios**, leads to an underutilization of perception information in end-to-end models.





EgoStatus | Motivation

Current prevailing end-to-end autonomous driving methods commonly use **nuScenes** for **open loop evaluation of their planning behavior.**

However:

- **NuScenes** dataset, characterized by **relatively simple driving scenarios**, leads to an underutilization of perception information in end-to-end models.
- **ADMLP** recently points out that a simple MLP network can also achieve stateof-the-art planning results, **relying solely on the ego status information**.

EgoStatus | Motivation

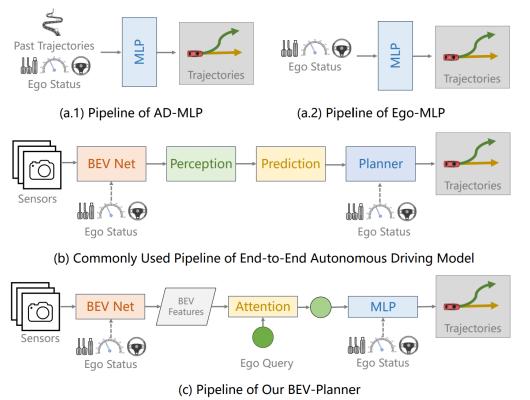
Current prevailing end-to-end autonomous driving methods commonly use **nuScenes** for **open loop evaluation of their planning behavior.**

However:

- **NuScenes** dataset, characterized by **relatively simple driving scenarios**, leads to an underutilization of perception information in end-to-end models.
- **ADMLP** recently points out that a simple MLP network can also achieve stateof-the-art planning results, **relying solely on the ego status information**.

Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?

EgoStatus | Method

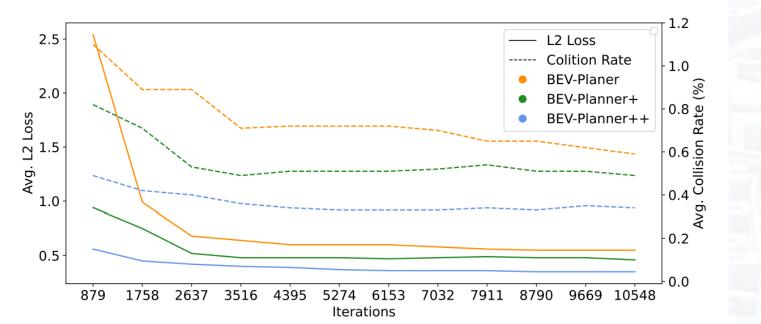


Open PriveLab 131

EgoStatus | Experiment

ID	Method	Ego Status		L2 (m) \downarrow			Collision (%) \downarrow			Intersection (%) \downarrow				altert source		
ID		in BEV	in Planer	1s	2s	3s	Avg.	1s	2s	3s	Avg.	1s	2s	3s	Avg.	ckpt. source
0	ST-P3	×	×	1.59†	2.64†	3.73†	2.65†	0.69†	3.62†	8.39†	4.23 [†]	2.53†	8.17 [†]	14.4 [†]	8.37†	Official
1	UniAD	X	×	0.59	1.01	1.48	1.03	0.16	0.51	1.64	0.77	0.35	1.46	3.99	1.93	Reproduce
2	UniAD	1	×	0.35	0.63	0.99	0.66	0.16	0.43	1.27	0.62	0.21	1.32	3.63	1.72	Official
3	UniAD	1	1	0.20	0.42	0.75	0.46	0.02	0.25	0.84	0.37	0.20	1.33	3.24	1.59	Reproduce
4	VAD-Base	X	×	0.69	1.22	1.83	1.25	0.06	0.68	2.52	1.09	1.02	3.44	7.00	3.82	Reproduce
5	VAD-Base	1	×	0.41	0.70	1.06	0.72	0.04	0.43	1.15	0.54	0.60	2.38	5.18	2.72	Official
6	VAD-Base	1	✓	0.17	0.34	0.60	0.37	0.04	0.27	0.67	0.33	0.21	2.13	5.06	2.47	Official
7	GoStright	-	1	0.38	0.79	1.33	0.83	0.15	0.60	2.50	1.08	2.07	8.09	15.7	8.62	-
8	Ego-MLP	-	✓	0.15	0.32	0.59	0.35	0.00	0.27	0.85	0.37	0.27	2.52	6.60	2.93	
9	BEV-Planner*	×	×	0.27	0.54	0.90	0.57	0.04	0.35	1.80	0.73	0.63	3.38	7.93	3.98	-
10	BEV-Planner	X	×	0.30	0.52	0.83	0.55	0.10	0.37	1.30	0.59	0.78	3.79	8.22	4.26	-
11	BEV-Planner+	1	X	0.28	0.42	0.68	0.46	0.04	0.37	1.07	0.49	0.70	3.77	8.15	4.21	-
12	BEV-Planner++	1	1	0.16	0.32	0.57	0.35	0.00	0.29	0.73	0.34	0.35	2.62	6.51	3.16	-

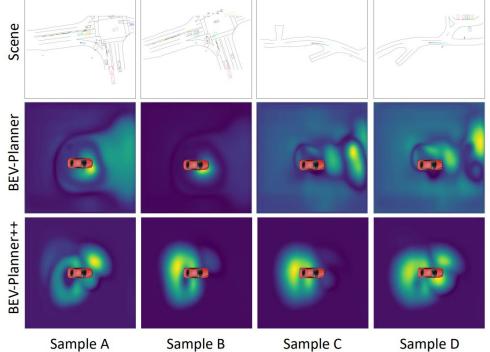
EgoStatus | Experiment



https://arxiv.org/abs/2312.03031

Open AriveLab 133

EgoStatus | Experiment



Open PriveLab 134