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End-to-end Autonomous Driving

An Introduction



Autonomous Driving (AD) Tasks

Bounding A .
o Waypoints Trajectory @

Perception

—>| Prediction |—>| Planning |[—

5

What are around? How will they go Where should | go?
in the future?

Challenge | Various weathers,
illuminations, and scenarios
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[Bi: Why end to end?

(a) Classical Approach Bounding box Trajectory

(b) End-to-end Paradigm (This Survey)

— backpropagation
: T
-« o S~ N -
—> -Module)( -ModuleY —> -Planning
Q Mapping ? feature

https://github.com/OpenDrivelLab/E
e P S PN s nd-to-end-Autonomous-Driving

o [FRIEREREIRIENBAN
o AHHITNIL, BURKBIRVEEIES
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https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving
https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving

[B]m: Why end to end?
+  BEEEREFI—NIBREIIERR R —RE T RAEFITE
+  EBEREREIZITTERAIREREEIR

+ EEHNREESHTHG (FR/SaEmn)

+ HHEERS (22 backbone), AT R&IF
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[Bi: Why end to end?

L1

E2E vs Non-E2E

REERSRFOALEN

BHTHFRIER(Closed-loop
/N\

evaluation)

TR
- BROESHHFHE

,
. ETRRERMEE ¥

CARLA g \ "
100 CARLA leaderboard Y,
—— Modular | We are here!
Credit to Andreas End-to-End

80

Geiger @ CVPR 2 o >
Workshop 2023 ¢

Credit to Dr. Yue Cao @ Zhihu
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Roadmap | End-to-end Autonomous Driving

CARLA Launched CARLA CARLA CARLA CARLA v2 Launched
DS: 8.94 DS: 24.98 DS: 47.65 DS: 79.95 DS:0.01
. . . nuPlan Launched
Reinforcement Policy Modality / Data Score: 0.90
Learning (RL) Distillation Advanced Structure Generation o
CIRL, MaRLn, GRI WOR, Roach, TCP InterFuser, ThinkTwice Advsim, L2C
A;Tr :gil:N Drive in A Day LBC Transfuser KING
0(50 Ag_ent / Reward Exgjrt - g K ﬂ\Tﬁic‘ger [- « _:'Ejj; = E|
K E Privileged | > Sensorimotor | u i SESE;EID i
Input Agent Agent
1988| 2016 2019 | | 2020 2021 \ 2022 | 2023 2024

Summary (1/2)

e Carla leaderboard gets much improved over the years. With new mapping /
routes (Carla v2) and nuPlan benchmark, this field got so much to do.

o RL method is prevalent in the beginning (since it's natural)

e [nput modality and more advanced structure boosts the performance

OpenﬂriveLab



Roadmap | End-to-end Autonomous Driving

Summary (2/2)

e The First Neural Net based method dates back to 2016 using Imitation Learning
e Learned policy from Experts (IL), with data augmentation, could prevail in performance
e Interpretability, with explicit design in the network stands out recently

o End-to-end design comes to obsess many merits in previous attempt

1988| 2016 2019 | | | 2020 | 2021 | | 2022 | | | 2023 2024
it : : | | | 5
| Expert
. I ﬁ)xpe ) Attention rl] " - ;r ~
=3 Drive by Critical | 5amPle| on-Policy N, Offsets | Policy |p,
*  wire — Fap m @ . Y
itartace rl_ e Lezlrined States Data A%Quﬁt‘r\f \E s | Pretraining m " i
Command i Segmentation gg Downstream
CNN E2E CIL DARB NEAT PPGeo UniAD
BDDV CILRS AgileAD, SafeDAgger NMP, BDD-X, PlanT SelfD, ACO P3, MP3, ST-P3
Imitation Conditional o P Policy Modular End-to-end
: Generalization Interpretability S :
Learning (IL) IL Pretraining Planning
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Trending | End-to-

—

E2E Vehicle

T=5Lnm

Ashok Elluswamy &
@aelluswamy

This end to end neural network approach will result in the safest, the
most competent, the most comfortable, the most efficient, and overall,
the best self-driving system ever produced. It’s going to be very hard to
beat it with anything else!

@ Elon Musk & B @elonmusk - Aug 26
twitter.com/i/broadcasts/1...

end Autonomous Driving Industry

v12 is reserved for when FSD is
end-to-end Al, from images in to
steering, brakes & acceleration
out.

E2E Robot

[l Tesla Optimus @Tesla_Optimus - Sep 24
il Optimus can now sort objects autonomously £2

Its neural network is trained fully end-to-end: video in, controls out.

No hard-code.

Completely learning on its own.

End-to-end, video to neural network to controls.
Don’t need map data at all, only coordinates!
No cellular connection needed.

® Probably e2e as a backup module
® Massive high-quality data prevail
® Mapless is promising and feasible

on Zhihu | Open/@riveLab


http://drive.google.com/file/d/18QAIkID2BXcEscYtbJ9SPZbQgaXOqKdO/view
https://www.cnbc.com/2023/09/09/ai-for-cars-walter-isaacson-biography-of-elon-musk-excerpt.html?__source=iosappshare%7Corg.whispersystems.signal.shareextension
https://www.zhihu.com/question/619544346
https://twitter.com/i/broadcasts/1djxXlVLaLOxZ

Trending | End-to-end Autonomous Driving Industry

And many others ...

Driving Input, 108 dimensions

............... Representation signal  + v v vuvuens. P Drivir}g OUFPUt,
m g SR Learning signal for optimisation ~ ***** """ *"" 10" dimensions
‘ Cameras (6 @ 25 Hz) @ H Motion
i Plan
2 GNSS .
\o 0/ Vehicle
W AY V E & Basic Sat-nav Map ZVUUZ cControls
‘ Vehicle State .
Decoded human-interpretable

) - intermediate representations
+ other sensing modalities -

where required, e.g. RADAR

< NVIDIA.

compiex pnysics, (Al) Irafmc moaels Loés fnclion
Synthetic / Retrieval 3

s () () ) (o) { )

Semantics, geometry, motion prediction.

World state

SIM sensors. v v v
Loss function  Loss function Loss function AV stack

() Neural network

artists physics based

comma.ai

® Openpilot is an open source

driver assistance system.

® Openpilot performs the

functions of Automated Lane
Centering (ALC) and Adaptive
Cruise Control (ACC) for 250+
supported car makes and

11:00am 1min 0.8 mi

openpilot

on the comma 3X

https://arxiv.org/abs/2206.08176
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https://arxiv.org/abs/2206.08176
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Public Opinions on Our Survey

e Paper

https://arxiv.org/pdf/2306.16927.pdf

e Repo (paper collection)

https://github.com/OpenDrivelLab/End-

to-end-Autonomous-Driving

Y AlexKendall &

@alexgkendall
This is a fantastic, comprehensive and forward-looking survey of
academic literature about end-to-end machine learning for autonomous

driving. It is a very timely publication as the field is exploding with
interest right now.

I'm aligned with the paper's conclusions on open algorithmic challenges.
There's loads of insight around opportunities like world modelling,
language, foundation models and long-tail robustness. This paper also
exposes that academic literature under-appreciates significant industry
challenges right now, such as (1) safety, reward modelling and policy
alignment against human expectations and risk, or (2) the significance of
establishing a synthetic/real-world data engine for training/validation,
which are critical to the success of any machine learning system. I'd love
to see more work in these areas.

Great to see @AutoVisionGroup @francislee2020, well done!

@ Awesome Vision Group @AutoVisionGroup - Sep 18

Yann LeCun 2 «
@ylecun

A nice survey of end-to-end learning methods for autonomous driving.

&) Awesome Vision Group @AutoVisionGroup - Sep 18

Why are Tesla @elonmusk and Wayve @alexgkendall @Jamie_Shotton moving
towards end-to-end autonomous driving? What is the state-of-the-art in this
field? With our friends @francislee2020 we recently wrote an extensive survey

paper on this emerging topic: arxiv.org/abs/2306.16927

2023398 i EiH B sh B¢

RERE

BRFak
#EMBYE

AR RRRZIIPAMIBIRRRG B BRNZRIEX:

'SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2023

End-to-end Autonomous Driving:
Challenges and Frontiers

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger and Hongyang Li
ArxiviEfE: https://arxiv.org/abs/2306.16927
FINBERREXEEARD, FHRECVPREWNMEMER Tarxivl, LUNREI—RME
FRETSE, EREXMTT, RAESSAIEE, MEBCTHTAREL. BFIEX
BENABRS, SARRI-—MENABINESIRAERERERRBNR.

B REFNEGR, ERSES.

Join Slack Discussions!

https://join.slack.com/t/opendrivel
ab/shared invite/zt-244Igu87b-
eLonLQzle4wRkg8W8WOQUIg

OpenﬂriveLab


https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving
https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving
https://arxiv.org/pdf/2306.16927.pdf
https://join.slack.com/t/opendrivelab/shared_invite/zt-244lgu87b-eLonLQzle4wRkg8W8WOUlg
https://join.slack.com/t/opendrivelab/shared_invite/zt-244lgu87b-eLonLQzle4wRkg8W8WOUlg
https://join.slack.com/t/opendrivelab/shared_invite/zt-244lgu87b-eLonLQzle4wRkg8W8WOUlg
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Y ah: : https://arxiv.ora/abs/2105.00636
EiRiABiE: World on Rails ps://arxiv.org/abs

fdense reward

@ 5 o017 o,
@@ — 025
0 @ 0.02

(a) Forward model (b) Bellman update (c) Distillation

OpenﬂriveLab


https://arxiv.org/abs/2105.00636

https://arxiv.org/pdf/2301.01006.pdf

FiRBiE: PPGeo

(a) Self-supervised Visuomotor Policy Pre-training (b) Downstream Tasks
! - Consecutive frames input
E ) — - Since frames barely change
; | P i Ego Motion T’ - We need to STOP
Y PR = ST g — —
|
e Visual Input
Photometric
i Depth D,
' / Reconstruction
i
i Ir | - - E
DepthNet a.l Stage One Visual Encoder
' (Fine-tuned)
frozen
! I » d Ego Motion T’ Lo PthD[net[Ec
: Reconstruction
| Visual Encoder - Single frame input
| {Our Focus) - Since a car is ahead '
| - We need to STOP a.2 Stage Two Policy Learning :

OpenﬂriveLab



https://arxiv.org/pdf/2301.01006.pdf

s . https://arxiv.org/pdf/2109.04456.pdf
EifiiE&: NEAT

T ]
' | t
: |
' X
X : - Waypoint
Yz @Q = m Offsets
t
vir [ f
Attention S
Map Y
X
N iterations Semantics
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https://arxiv.org/pdf/2109.04456.pdf

¢
44
o0

ilzlfi );

NEAT

Encoder

ResNet B

jr

v~

https://arxiv.org/pdf/2109.04456.pdf

Positional Emb.

________________________________________ -
|
|
|
|

________________ .
Tn:: c
|
—| Transformer 0 Loss .
none
road

(‘)h.d%lli;cll.'c < CE

red hieht

ereen light Loss
N iterations

Sampling and Control

wT+I ’Wr]"+_'J

— ses wl"+2 \

Lateral PID

@

Longitudinal
PID

S\ 8 E
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https://arxiv.org/pdf/2109.04456.pdf

https://arxiv.org/abs/2205.15997

IR A% TransFuser

TrangFuger- A
; i i
RGB 176 x 40 x 72 88x20x216 44 x 10x 576 22x5x 1512 Image Branch : :
Image & 4 e /)‘ i 5 ,_//J‘ - 4 ‘ : |
B | 4 | |
‘ | |_re ! g IxL
L | L i 1 ! . ; s
e e e il [P 1 I LRSS I
I W, [
5 Transformer Transformer Transformer Transformer 4 | : ' /‘1\ ;
LiDAR \ ey e e e e
m—— _ I . s NS A ] [ 7
[ = I l \ Aw, -in': dw, dw,
= : : " .= t
‘ ! J J : AvgPool | | ; ! ! !
\ e s + (. MLP |— [——{GRU — GRU (— GRU [— GRL

‘J | TTﬁ b Ve | e i
| —p . P | & .n_r?. o

64 x 64 x 72 32x32x216 16 x 16 x 576 8x8x1512 BEV Branch 512 Goal Location
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https://arxiv.org/abs/2205.15997

Eifiik: ST-P3

T-step N-view Camera

High-level Command

‘Go Straight”

Backbone
Network

l

Front-view
Vision Features

Perception

Aligned
BEYV Features

Prediction

https://arxiv.org/abs/2207.07601

Scene
Representations

|
v

/7

H horizons

»

Planning

J

A
Front-view
Vision Features

SDV
Trajectories

\

- I

Bi
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https://arxiv.org/abs/2207.07601

Eifiik: ST-P3

|

Egocentric
Alignment

https://arxiv.org/abs/2207.07601

A
i-- -
o
r_\o _
. Y
O
Y
Accumulation
A v
B s e b
@)

(c)

s

u, € REXDXHe X We

7

»

x; € REXHpXWp

Egocentric-aligned
BEV Features

Depth Estimati

il
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https://arxiv.org/abs/2207.07601

https://arxiv.org/abs/2207.07601

lIbEI£ ST-P3

“Pt+1 :PE+H

|

Nt Nt Nt
® + |["®

(T | [ pathwaya  x&, X4z X{+H
‘N(ﬂb 0}2) . A .
p
Fusion| - @ Fusion |~ @ Fusion| » @
ii ) b 4
(1i) pathway b 5y Xha Xe+H

@ M MM @
® © ©
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https://arxiv.org/abs/2207.07601

Eifiik: ST-P3

Scene
Representations

https://arxiv.org/abs/2207.07601

High-level Command

ol

Predicted
Future States

X411
X422

Xt+H

»

Protocols

I

Sampler
Aggregated
Cost Map
Rule-based .
5 GRU
> * | Refinement
. = t
H horizons

Learning-based

i Front-view
] Vision Features
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https://arxiv.org/abs/2207.07601

CONTENTS
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UniAD - Pipeline

A O Ego-vehicle Query

—@-’@

Multi-view

Vision-only Input

L Backbone I

|
_ [ <
MapF@ner -E
-1

e Entire pipeline connected by queries
e Tasks coordinated with queries

Perception

\
N

Agent-level
Feature
: O

Motion
_ D >

Former o

T L
Bl Motion (]
Prediction

OccFormer

T

Yy,

Planner

i)

Occ Q Scene-level
Feature

N

L Planning —

RIS < First time to unify

EhN Al - full-stack AD tasks!
® Interactions modeled by attention



UniAD - Ablation Results

Tasks benefit # each other and contribute to safe planning

D Modules Tracking Mapping ' Motion Forecasting Occupancy Prediction Planning
Track Map Motion Occ. Plan | AMOTAT AMOTP| IDS| | loU-lanet loU-roadt minADE]| minFDE] MR} | IoU-nt loU-f.1 VPQ-n.t VPQ-f.1 | avgl2] avg.Col.|
0* v v v v/ v/ | 0.356 1.328 893 | 0.302 0.675 | 0.858 1.270 0.186 55.9 34.6 47.8 26.4 | 1.154 0.941
1 v 0.348 1.333 791 . - - - - - - - - - -
2 v - - - 0.305 0.674 - - - - - - - - -
3 v v 0.355 1.336 785 0.301 0.671 - - - - - - - - -
4 v - - - - - 0.815 1.224 0.182 - - - - - -
5 v s 0.360 1.350 919 - - 0.751 1.109 0.162 - - - - - -
6 v v s 0.354 1.339 820 0.303 0.672 (0.736(-9.7%)) 1.066(-12.9%) 0.158 - - - - - -
7 v - - - - - - - - 60.5 37.0 524 29.8 - -
8 v v 0.360 1.322 809 - - - - 62.1 38.4 52.2 32.1 - -
9 v v v v 0.359 1.359 1057 0.304 0.675 I 0.’710(-3.5%)' 1.005(-58%) 0.146 62.3 39.4 53.1 32.2 - -
10 v - - . - = - - - - - -
11 v v v v 0.366 1.337 889 0.303 0.672 0.741 1.077 0.157 - - - -
12| v v v v v 0.358 1.334 641 0.302 0.672 | 0.728 1.054 0.154 62.3 395 52.8 323
Conclusion:

e ID. 4-6: Track & Map = Motion &
e ID.7-9: Motiong” ¢ Occupancy &~
e ID. 10-12: Motion & Occupancy — Planning &”

OpenﬂriveLab




UniAD - Recover from Upstream Errors

Planner could still attend to ‘undetected’

Objects in Undetected Still Attended
Distance l by TrackFormer| by Planner
, = . - MI N :,

KEEP FORWARD

I3l
Pl

Open.ﬂ riveLab




UniAD: One-page Summary

o Planning-oriented Philosophy: An end-to-end autonomous driving (AD) framework in
pursuit of safe planning, equipped with a wide span of AD tasks.

« Unified Query design: Queries as interfaces to connect and coordinate all tasks.

o State-of-the-art (SOTA) Performance with vision-only input.

o First Step towards Autonomous Driving Foundation Models

A QO Ego-vehicle Query 2\
v /- N 3 =
. BEV Feature " K § Ageiit-level = =
S . sent-leve
» kv \‘ Feature |
B Track Q O ik
I - KD Motion O
I & 4 T —— |  OccFormer - Planner
) . Map @ o , fr
Multi-view Bird’s eye view A - |
Vision-only Input Feature i D x S -
1 p cene-leve
MapF(%wr H- Occ @ Feature
= o Hl Motion @
| Backbone I L Perception I | Prediction I L Planning -

OpenﬂriveLab




What’s next

Tasks, Training Strategies, etc Closed-loop Evaluation Scale-up?

Y v

Perception / E2E Challenges DriveData / DriveAGI
Visual Abstraction

OpenﬂriveLab



Shanghai Al Laboratory | i ATERELIOE=

CONTENTS

DriveAdapter

Poster: THU-AM-Room “Nord”-155

ICCV.5

Oral

Github: https://github.com/OpenDrivelLab/DriveAdapter

DI @G

Open /@ riveLab


https://github.com/OpenDriveLab/DriveAdapter

DriveAdapter - Motivation

How to balance the efficiency and causal reasoning ability?

Raw Sensor Input

Reinforcement .
Learning

@
&

Efficiency

Model

(a) Direct Reinforcement Learning

Causal (/]
Privileged Input Stage 1
Reinforcement
Teacher Learning e
Model =] a

Raw Sensor Input iSupervisions

! Privileged Input Stage
Reinforcement

Teacher Learning

Model

1

'
T
|
1
1

Masked Feature |

Action
Ahgnmcm: Guided

v
Feature
Frozen Teacher Model Learning

with Adapters
f
Raw Sensor Input
: E’ Perception
- £ Student

Learning
—_—

Student Behavior Cloning Model
Model
Stage 2 ) Stage 2
. Efficiency (/] . . Efficiency |/
(b) Teacher-Student Paradigm Causal c) DriveAdapter Paradigm Causal (/]

Shanghai Al Laboratory
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DriveAdapter - Motivation

How to balance the efficiency and causal reasoning ability?

Raw Sensor Input

Reinforcement .

Learning
Model @

| Iy |

-

. ) ; Efficiency

(a) Direct Reinforcement Learning Causal [

Shanghai Al Laboratory open riveLab




DriveAdapter - Motivation

How to balance the efficiency and causal reasoning ability?

Raw Sensor Input
: Z Reinforcement .

Learning

Model

| Iy |
Sé
Efficiency

(a) Direct Reinforcement Learning Causal [

Privileged Input 5‘?99 1

Reinforcement
Teacher Learning o
Model =] g

Raw Sensor Input ESupeN\Sions
¥ r v
Student Behavior Cloning
Model
Stage 2
. Efficiency [/
(b) Teacher-Student Paradigm Causal

Shanghai Al Laboratory open riveLab




DriveAdapter - Motivation

How to balance the efficiency and causal reasoning ability?

Raw Sensor Input

Reinforcement .
Learning

@
&

Efficiency

Model

(a) Direct Reinforcement Learning

Causal (/]
Privileged Input Stage 1
Reinforcement
Teacher Learning e
Model =] a

Raw Sensor Input iSupervisions

! Privileged Input Stage
Reinforcement

Teacher Learning

Model

1

'
T
|
1
1

Masked Feature |

Action
Ahgnmcm: Guided

v
Feature
Frozen Teacher Model Learning

with Adapters
f
Raw Sensor Input
: E’ Perception
- £ Student

Learning
—_—

Student Behavior Cloning Model
Model
Stage 2 ) Stage 2
. Efficiency (/] . . Efficiency |/
(b) Teacher-Student Paradigm Causal c) DriveAdapter Paradigm Causal (/]

Shanghai Al Laboratory
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DriveAdapter - Motivation

Reinforcement .

Model Learning Q
'

(a) Direct Reinforcement Learning Efficiency

How to balance the efficiency and causal reasoning ability?

! Privileged Input

Teacher
Model

Bd

Reinforcement
Learning

Stage 1

Causal (/] ' ‘
— Masked Feature | Action
Ahgmmcmi Guided
Privileged Input St_age 1 Feature
Reinforcement Frozen Teacher Model Learning
Teacher Learning with Adapters
Ly |
Model (=] é 4
. : Raw Sensor Input
H - - y Perception
Raw Sensor Input iSupervisions Student Learning
: ' ’ Model
Student Behavior Cloning
Model
Stage 2 Stage 2
Efficiency (/] . : Efficiency |/
- i DriveAdapter Paradigm p—
(b) Teacher-Student Paradigm Causal c) DriveAdapter Paradig Causal (/]

Shanghai Al Laboratory

Utilize the strong RL-based
privileged teacher model!

® Train a Teacher Model for
Planning by RL

e End-to-End Connected by
Adapter

® Train a Student Model for
Perception

riveLab

Open




DriveAdapter - Challenge

Challenge 1: Student Model is not perfect

BEVFusion + Mask2Former
2M training data

Privileged Input Perception Result

Shanghai Al Laboratory

Method Input Driving Score 1
Transfuser [39, 8] Camera + LiDAR 31.0
LAV [3] Camera + LiDAR 46.5
Student Model Camera + LiDAR 8.9
+ Frozen Roach
Roach [55] Privileged Info. 74.2
Roach + Rule [50] Privileged Info. 87.0

Directly feeding the perception results into the
teacher model does NOT work.

Open

riveLab




DriveAdapter - Challenge

Challenge 1: Student Model is not perfect Method Input Driving Score 1

Transfuser [39, 8] Camera + LiDAR 31.0
LAV [3] Camera + LiDAR 46.5
Student Model Camera + LiDAR 8.9

+ Frozen Roach
Roach [55] Privileged Info. 74.2
BEVFusion + Mask2Former Roach + Rule [50]  Privileged Info. 87.0

2M training data
Privileged Input Perception Result o Directly feeding the perception results into the

teacher model does NOT work.

Challenge 2: Teacher Model is not perfect

® Teacher Model would be the upper bound of
Example: Emergency brake if there is any obstacle in the front - Student Model’s performa nce

require privileged information

## Rules for emergency brake

should_brake = self.collision_detect()

only ap brake = True if (control.brake <= ® and should brake) else False
if should brake:

control.steer = control.steer * 0.5

control.throttle = 6.0

control.brake = 1.0

Shanghai Al Laboratory

Open'« riveLab




DriveAdapter - Method

Idea 1: Deal with the distribution shift of between perception GT and prediction

Measurement

Measurement Frozen Roach !
MLP ]

[state, canbus] :I?

]
]
BEV Segmentation :
]

Action Control
MLP Head . Signals |

P S |
| ©f

Downsample Conv Layers

Shanghai Al Laboratory

Reduce the error in an end-to-end layer-by-layer manner:

Roach (teacher model) = 6 Convs -> flatten -> 4 linears
Adapter module after each layer

Adapter Input: H}" = Adapter; | ([H;_1; F;_1])
Adapter Output: H; = Teacher;(H")

Adapter Target/Label: GT feature map of teacher

Open'« riveLab



DriveAdapter - Method

Idea 2: Inject the driving knowledge within rules into the model

BEV
Segmentation

Teacher Model

(Planning) - Store the knowledge in the Adapter module:

------------------------- Control

Signals

[pep—

|
|
i Frozen Frozen Frozen @
—+— Teacher Teacher Teacher —1—
l i Module, Module, Moduey 1 Sf
| ] .
...... !
| F Ha | : -
| ] HAdpt HN—1 H
| i Adapt ! Adapt i | Act
\ 1 pter, pter, ' ction
} i ' Guidance
| | F | | Fy | !
! l { H o
Ground-Truth |lMasked Feature Alignment t Decision by
BEV Segmentation H{ HS Teacher + Rules

Shanghai Al Laboratory

Target: let the frozen teacher action head output
corrected action

Mask feature alignment loss for failure cases -
not to learn the undesired feature map

Directly apply action loss for failure cases - guide
the middle feature maps by backpropagation

Open'« riveLab




DriveAdapter - Experiments

# SOTA driving performance on CARLA closed-loop benchmark

CARLA
Method Teacher Student Reference DST RCT ISt
CILRS [11] Rule-Based Behavior Cloning CVPR 19 7.8 103 0.75
LBC [4] Imitation Learning Behavior Cloning + DAgger CoRL 20 123 319 0.66
Transfuser [39, &] Rule-based Behavior Cloning TPAMI 22 | 31.0 47.5 0.77
Roach [55] Reinforcement Learning Behavior Cloning + DAgger ICCV 21 41.6 964 043
LAV [7] Imitation Learning Behavior Cloning CVPR22 | 46,5 69.8 0.73
TCP [50] Reinforcement Learning Behavior Cloning NeurIPS 22 | 57.2 804 0.73
ThinkTwice [26] Reinforcement Learning Behavior Cloning CVPR 23 65.0 955 0.69
DriveAdapter Reinforcement Learning Frozen Teacher + Adapter Ours 61.7 923 0.69
DriveAdapter + TCP | Reinforcement Learning Frozen Teacher + Adapter Ours 659 944 0.72
MILE*T [1%] Reinforcement Learning Model-Based Imitation Learning | NeurIPS 22 | 61.1 974 0.63
Interfuser® [43] Rule-Based Behavior Cloning + Rule CoRL 22 68.3 95.0 -
ThinkTwice* [20] Reinforcement Learning Behavior Cloning CVPR23 | 709 955 0.75
DriveAdapter + TCP* | Reinforcement Learning Frozen Teacher + Adapter Ours 71.9 973 0.74

Shanghai Al Laboratory

Open
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DriveAdapter - Take-away

Breaking the coupling barrier of Perception and Planning:

o Driving knowledge from millions of steps of exploration by RL -> causal reasoning
(MDP; reward), robustness (all kinds of strange cases/scenarios during exploration)
O Efficient training for the student model

« Masked feature distillation: Combine the knowledge of
learning-based teacher and human designed rules

o Real-world application (potential): A teacher on large-scale real-world motion dataset ,
and use DriveAdapter to solve domain adaptation for deployment

o A Further Step towards Real-world End-to-end Autonomous Driving!

Shanghai Al Laboratory open riveLab




OpenﬂriveLab

WATHAELRR
rificial Intelligence Laborator,

T

ERITIEEH - Part 2

GenAD / VIiDAR / ELM / etc



Openﬂ riveLab

h.
T
3>

H

o

A
ligence Laboratory

How to scale up the autonomous driving models?

ViDAR



ViDAR - World Model

A Path Towards Autonomous Machine Intelligence Version, Yann Lecun

Task / Objective:

* Represent the world & Learn to predict and re-act
*  Simulate the world without REAL interaction with the world.

What happens if | go straight?

Shanghai Al Laboratory open riveLab



ViDAR - World Model in Driving + Action

. Future Prediction Model World Model

Carnegie — T
Mellon b 4 :

University =
' Open:arivelLab
S2Net — Point cloud future 4D-0 - Point Cloud &
prediction for planning -Occ — Ego Future Tracjectory Vistal Image
_ 0 o- 0
V|suaI Image 2022 2023
Fiery — visual future Gaia-l — Text & Steering

prediction for planning.

DriveDreamer — Box &
Image & HDMap

~ Y

WAYVE ¥ T ’ IACK W ¥ oo i DrivingDiffusion — Layout

—

Shanghai Al Laboratory ‘ open riveLab




ViIiDAR - World Model in Driving + Action

I
The First Multimodal World Model

Visual Inputs
-1s, -0.5s. Os

LIDAR Qutputs
0.55, 15, 1.55, 25, 2.55, 3s

Turn ﬂ
Left

Go
Forward

Shanghai Al Laboratory 5 open riveLab




Introducing ViDAR, %
Visual Point Cloud Forecasting for Scalable Autonomous Driving

Visual Point Cloud Forecasting enables Scalable Autonomous Driving

Zetong Yang LiChen Yanan Sun Hongyang Li

OpenDriveLab and Shanghai AI Lab
https://github.com/OpenDrivelLab/ViDAR

OpenﬂriveLab



ViDAR | At a Glance
—

Summary: Training multimodal world model by Visual Point Cloud Forecasting and
boosting End-to-End Autonomous Driving.

- . 4 N 5
[ 3D Object Detection ] VIDAR: A Visual Autonomous Driving Pre-training Model [ Planning ]
History Visual Inputs

munmﬂu |
Visual Point Cloud Forecasting [ PointCloudForecasting |

o o e ¢ o @ e

S [

L (=) Future Point Cloud Predictions 2

[ Multi-Object Tracking ] [ Map Segmentation ] [ Future Occupancy Prediction ] [ Motion Forecasting ]

421 ’ -

- 332 * Previous 662 —
= e . = — — '-— SOTA e 62.8 P =
[l [ = B vioar [] o ow =




ViDAR |

Architecture

'VIDAR Pre-training © Multi-view @ Temporal)

G Modelli
Visual Point Could Foreccsting Sames G

+1 t+2

— [0 oy EZ
-l “ _ VIDAR Model :@ = 4 -‘

Multl-frome MuEtl-wew Imcges

=1

- — Multl-frc:me Point Clouds

i . - . e e e S e e e e e e e e e e e e e e e e em e e e e e e e e e e T

t+1 t+2 t+3 i

t t t :

_,| History | Latent _| Future |_[ Future |_[ Future | |
Encoder Rendering Decoder Decoder Decoder :

t t t b

Future BEV Queries I Future Ego-motion :

1

I

I
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ViDAR | Future Prediction Experiments
—

Visual Inputs
-1s,-0.5s, Os

LIDAR Outputs
0.5s. 1s. 1.5s, 25, 2.5s, 35




ViDAR | Different Ego Control Experiments

©
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3
2
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v
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?
»

LIDAR Outputs

0.5s. 1s, 1.5s, 25, 2.5s, 3s

1

Go
Forward

Turn
Right
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How to scale up the autonomous driving models?

GenAD: Generalized Predictive Model
for Autonomous Driving



OpenDV Benchmark

Training Data (hours) _ ¥ = —
I Bubble size: Number of cities covered T @ ’? % X . ,-”j i
Dash line Length: Duration of the training dataset e WAYVE GenAD (OUI’S)
? Unknown number of cities General GAIA-| ? o
@ Proprietary data World Model o i
@ rublic data | >244
h AbDriver-|
DriveGAN | o | Q o :
b | :
~200 | hours |
Learning a ? UKW | OigalAl hours 1 (A & :
- Driving Simulator p 160 , DriveDreamer Drive-WM WoVoGen I
| hours I | I
" 7 hours I | 5 hours 9 I : 9 5 hours 9 5 hours I |
2016/08 2021/04 2023/06 2023/09 2023/11 2023/12  2024/03 Time

OpenﬂriveLab




Motivation | What Makes for Generalized AD Model?

Data

+ LLMs pretrained on trillions of unlabeled text tokens exhibit
great generalization in open-world scenarios.

- However, existing AD models are tralned on limited labeled

ich hampers it gSgaa
Existing AD
Mod

Unlabeled Text Data Labeled Driving Data
3 > D
«\\%i; )vx) O aniv Crawl w @ e3RGO m
» Internet scale: World Small scale: Limited
v X .
knowledge. domain knowledge.
v, Free of labeling: Easy Intricate labeling [
to collect and scale up. process: Unscalable. ey 4
Vg
[ 1 [ 1
~_~ ~_" e Bbox, map, trajectory, etc.

(2 Good X Poor

OpenﬂriveLab
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Motivation | What Makes for Generalized AD Model?

No accessible labeled data

Task / Objective:

* Supervised Learning
% Hard to scale without
sufficient labeled data

o

UniAD i UniAD-XL?

» Self-supervised Learning on Feature Space
% Scalable with developed VLMs for supervision. (e.g., DINOv2)
[ Focused on specific objects (e.g., centered, large ones)
% Ignoring details. However, the devil is in the details, especially for driving

® Feature map visuali;ation from DINOv2
e Focusing on main objects, while ignoring fine-grained details

OpenﬂriveLab



Motivation | What Makes for Generalized AD Model?

v“ IR
Our finding: ¢
Data: +

Task / Objective: Video Prediction
— Scalable and generalized AD Model

» Scalable Data (easy to collect from the web)
¥ “Self-supervised” Manner
=« No 3D labeling needed
»  Detail preservation 4
& Learning world knowledge and how to drive inherently s

&4 Good (> ) , collected worldwide

OpenﬂriveLab
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Introducing GenAD, ‘2. %@L b &

The First Video Generative Model as World Simulator For Autonomous Driving

Generalized Predictive Model for Autonomous Driving

Jiazhi Yang!*  Shenyuan Gao?'*  Yihang Qiu'* Li Chen®'' TianyuLi® Bo Dai'
Kashyap Chitta*> Penghao Wu' Jia Zeng' Ping Luo® Jun Zhang??
Andreas Geiger*™  Yu Qiao'® Hongyang Li'f

! OpenDriveLab and Shanghai Al Lab “? Hong Kong University of Science and Technology
% University of Hong Kong  * University of Tiibingen ° Tiibingen AT Center

OpenﬂriveLab



GenAD - Overview

Data Network Tasks
Architecture

OpenﬂriveLab



GenAD | At a Glance

Summary: Training a billion-scale video prediction model on web-scale driving videos,
to enable its generalization across a wide spectrum of domains and tasks.

OpenDV-2K
"

2000+ hours Multimodal Driving Data

e || 0

YouTube Driving Videos “Texts”
; g -
,*‘ o —— W
e’ Bt
~ J
'@ N
Public Driving ><
Datasets
. / VLM /LLM )

Tasks

1. Zero-Shot Generdlization

Observed Imagined




Data | OpenDV-2K Dataset | ‘g 3’3‘%@; -

+ Multi-modal and Multi-source Dataset >) BLIP2 N =
YouTube | OpenDV-2K . |

o Paired with textual command and Video Clossifier B  (PubicDatosels
context (annotated by VLMs). e T reeeang
e Sourced from both online videos and (oot
ecelerate.
public datasets for diversity. YouTube | A personwaking on a
4 g [ beach at sunset.
gl - J
' N

Keep the direction.

NUSCENES | rain, cross bridge, truck.
Talk2Car | Move into the same lane
as the Jeep.

-

Make a left turn.

nuPlan | roliowing lane with slow

lead.
9 W
- R
Turn right.
HAD Keep going until you reach
ared light.
e )

Deviate from the path.
HDD | The ego vehicle deviates
from its original path to
avoid the parked car.

OpenﬂriveLab



Data | OpenDV-2K Dataset

KITTI Driverse full data
- I Driverse-YouTube split
Argoverse V2 B Other Datasets
. . W
* Largest dataset up-to-date for autonomous driving wme
Honda-HDD
* 2059 hours, 709 areas 3
2 Honda-HAD
[}
ONCE
Duration  Front-view | Geographic Diversity Sensor nuScenes
Dataset k .
(hours) Frames Countries Cities Setup
nuPlan
X KITTI [14] 1.4 15k 1 1 fixed Driver
X Cityscapes [10] 0.5 25k 3 50 fixed riverse | . — . . . .
X Waymo Open* [41] 11 390k 1 3 fixed 0 0o 20 400 500 600 700
X Argoverse 2* [45] 4.2 300k 1 6 fixed Number of cities
v nuScenes [6] 5.5 241k 2 2 fixed KITTI Driverse full data
v nuPlan [7] 120 4.0M 2 4 fixed Argoverse V2 B Driverse-YouTube split
v Talk2Car [12] 4.7 - 2 2 fixed B Other Datasets
v/ ONCE [32] 144 ™ 1 - fixed Waymo
v Honda-HAD [23] 32 1.2M 1 - fixed Honda-HDD
v Honda-HDD-Action [38] 104 1.IM 1 - fixed B
v | Honda-HDD-Cause [38] 32 - 1 - fixed £ Honda-HAD
a
v/ | OpenDV-YouTube (Ours) 1747 60.2M >40f >709% | uncalibrated ONCE >
- OpenDV-2K (Ours) 2059 65.1M >407 >709T | uncalibrated nuScenes
" nuPlan
L]
OpenDV'ZK (Ours) ) Driverse
/L
0 150 300 " 1200 1500 1800 2100

Duration (hours)

OpenﬂriveLab




Model | Video Prediction Model for Driving

¢ GenAD (5.9B) = SDXL (2.7B) + Temporal Reasoning Blocks (2.5B) + CLIP-Text (0.7B)
. Tunlng the image generation model (SDXL) into a highly-capable video predlctlon model

.1 Stage One . a.2 Stage Two | g Y
\ I o " [ention
Image Domain Transfer Video Prediction Pre-training N | Direction f

X
it
wlifsticn,

-
Decoupled SA

]

T

| Rt
| i

1

!

S :
% ‘ &
e e ._ Video-level Denoising | : 5>
Temporal Reusonmg Blocks | y -.
= K :
Tumn Loft ....’1-.,.: “ ﬂiﬁ i;‘ S | Decoupled SA
. u’ : ‘.‘ 1
(a) GenAD: Two-Stage Learning ; P Caisal
" - a ) " " " Masking
* | * | |
Temporal Spatial Temporal Conditional Temporal :
— Reasoning Self Reasoning | Cross Reasoning FFN ===% 1 | Causal TA |
Block Attn. Block Attn. Block ros ’ ;
t 1 2

L

(b) GenAD Transformer Block Architecture %’gﬁ;ﬂgﬁ (c) Temporal Reasoning Block

OpenﬂriveLab




Tasks | Zero-shot Generalization (Video Prediction)

} YouTube

Zero-shot video
VidooCration g;,f, o e I predictiqn on unseen
e S - I R ias == &' datasets including
NI g P S S e S o _ Waymo, KITTI and
DMVFN ‘s;.;f; - , i K e e e B8 ccanes
GenAD Ies
(Ours) B

12VGen-XL 5
VideoCrafter1 i \a % ‘la@ % !m‘

OpenﬂriveLab



Tasks | Language-conditioned Prediction
—

~—— 2. Language-conditioned Prediction

Control with different _
texts (command/context) j Imagine

“Change to
the left lane”

Instruct the future with free-
form texts.

~ “Tum righe parked cars, a parking lot”

Open.ﬂ riveLab




Tasks | Action-conditioned Prediction (Simulation)
I

BEV Trqj. Observed (= l Imagined T

. nuScenes {
Method Condition Action Prediction Error (]) 25!
Ground truth 0.9
GenAD text 2.54
GenAD-act text + traj. 2.02
5
Table 4. Task on Action-conditioned prediction. Compared to ol
GenAD with text conditions only, GenAD-act enables more pre-
cise future predictions that follow the action condition. =

0 10
Simulate the future 1\
differently conditioned on o
future trajectory.

Open.ﬂriveLab



Tasks | Planning

Control with high- Method # Trainable nuScenes
level command eto Params. | ADE(]) FDE ({)
ST-P3* [20] 10.9M 2.11 2.90
% UniAD* [22] 58.8M 1.03 1.65
GenAD
GenAD (Ours) | 0.8M | 1:23 231
y D, Table 5. Task on Planning. A lightweight MLP with frozen
Lightweight Predicted GenAD gets competitive planning results with 73 x fewer train-
Planner Trajectory able parameters and front-view image alone. *: multi-view inputs.

Training process speeds up by 3400 times
compared to UniAD (CVPR Best Paper).

OpenﬂriveLab




More Visualizations on Video Prediction

OpenﬂriveLab
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DrivelLM:
Driving with Graph Visual Question

Answering

https://github.com/OpenDrivelLab/
DrivelLM



https://github.com/OpenDriveLab/DriveLM
https://github.com/OpenDriveLab/DriveLM

Trending: Driving + Language

Honda Research Institute USA

Go straight at an intersection then turn left.
There are construction cones on the road.

HAD — human-to-vehicle driving

Explainable Driving advice, highlighting key objects.
Behavior
o Planning 0 Prediction O—W
BDD-X — one-sentence 2019 2022 2023
explanation of driving
behavior.

@ Berkeley DeepDrive

< >

Action description: Action justification:

(1) The car is driving as there is nothing to impede it.

OpenﬂriveLab




Source Dataset # Frames Avg. captions/ QA Total captions / QA Total captions / QA Total captions / QA Logic among

Dataset per annotated frame in Perception in Prediction in Planning captions/QA pairs
° ° ° nuScenes-QA [47] nuScenes 34,149 135 460k X X None
I re n d I n . D rIVI n + L a n u a e nuPrompt [66] nuScenes 34,149 1.0 35k" X x None
. HAD [31] HDD 25,549 1.8 25k X 20k None
BDD-X [30] BDD 26,228 1 26k X x None
DRAMA [40] DRAMA 17,785 5.8 85k X 17k Chain
Rank2Tell [51] Rank2Tell 5,800 - - X - Chain
DriveLM-nuScenes nuScenes 4,871 91.4 144k 153k 146k Graph
DriveLM-CARLA CARLA 183,373 20.5 2.46M"" 578k 714k Graph

Table 1. Comparison of DriveLM-nuScenes & -CARLA with Existing Datasets. * indicates semi-rule-based labeling (w/ human
annotators), ** indicates fully-rule-based (no human annotators), and - means publicly unavailable. DriveLM-Data significant advances
annotation quantity, comprehensiveness (covering perception, prediction and planning), and logic (chain to graph).

Rank2Tell — reasoning for the rank of
objects’ importance level. DriveLM — perception-prediction-
Talk2Car — a description of how to reach the planning driving description with
goal point from current position. graph-of—thought.
X . HAD — human-to-vehicle driving DRAMA — caption about important objects
Explalnable Drlvmg advice, highlighting key objects. and future decision.
Behavior
(0] Planning U Prediction
BDD-X — one-sentence 2019 2022 2023
explanation of driving - e
behavior. ‘The construction worker in blue dress is standing LINGO_]‘ X Fommentary for explaining
5 !on the left side of the road. Please follow his driving behaviours.
@ Berkeley DeepDrive \instructi 35 & &=
@ Q
'

For now, language into driving is marginal (trivial).
Serves only as a “commentator”. We haven'’t verified (or seen) the effectiveness.

OpenﬂriveLab




https://arxiv.org/abs/2312.14150

DriveLM: When LLMs meet Driving In collaboration with S
- Largest and high-quality benchmark, up to date.
n »
O Benchmark op?w::/;:):\::lvel-ab
O percepton UTUBINGEN
O Motion Prediction DriveLM — Graph VQA
GPT-Driver -q 22 Dec 23

O End-to-end Autonomous Driving
02 Oct 23

* Model only. No dataset

@ Agent-Driver LMDrive
WAYVE -
Q Ssizeindicates the scale of data R T 17Nov23 12 Dec 23(/)
LINGO-1 DriveGPT4 Drive Anywhere DriveMLM
14 Sep 23 02 Oct 23 26 Oct 23
Approach Pre-ChatGPT Era ¢ 14 Dec 23
Starred 288 -
Dataset HAD NuSce||1es -QA Rank2Tell Talk2BEV Reason2Drive el @ | -
BDD-X 16 Nov 19 24 May 23 12 Sep 23 03 Oct 23 06 Dec 23 Starred 490 -
‘ﬁ DRAMA NuPrompt = Euhuticsh =3
30uul18 U] 225ep22 7 08sep23 ol feseare LaMPilot
=0 HIR] 07 Dec 23
B i g 257 PURDUE

Shanghai Al Lab Openﬂ riveLab



https://arxiv.org/abs/2312.14150

LLMs in Driving

DriveLM: Driving with Graph Visual Question Answering

Chonghao Sima*!*  Katrin Renz?**  Kashyap Chitta>® Li Chen*! Hanxue Zhang'
Chengen Xie! Ping Luo® Andreas Geiger®® Hongyang Li'

! OpenDriveLab, Shanghai Al Lab 2 University of Tiibingen
3 Tiibingen AI Center 4 University of Hong Kong

OpenﬂriveLab



DrivelLM - Introduction

- Generalization and Interactivity in Autonomous Driving.
- Generalized to unseen sensor configuration and objects.

- Regional / Global (e.g. European) regulations require explainability through interaction.

- Recent success in Vision Language Models.
- Good reasoning ability, enabled by LLM.

- No BEV representation, since human do not rely on BEV.

- Why VLM in AD?
- Reasoning ability helps generalization.

- Language output provide interactivity.

OpenﬂriveLab



DrivelLM - At A Glance

Graph Visual Question Answering
~———3> QObject Level

__________________________

+ O O © ! p, - Perception

Q O O
Q O O
o
2; QA E’f‘irs
-8 o

______

[+3Y 0 ' -
Gp —>: + Behavior |

& i+ Motion !

| DriveLM-Agent J
- The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly.

OpenﬂriveLab




DrivelLM - At A Glance
]

Q — Question; A — Answer;

Q: objects worth noting

A: i
pedestrian in front of

Q:
pedestrian
A: objects move to the right

lane, cross the ped-crossing

Q: the safe actions
objects?
A: wait for
pedestrian turn right.
n

- The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly.

Open.ﬂ riveLab




DrivelLM - At A Glance

Graph Visual QA

Q: important objects
Predicted Answer Ground Truth Answer
GPT
¢ Score R

Trajectory Prediction

Prompt: the motion
Predicted Trajectory Ground Truth Trajectory
Displacement
¢ Error 5

Generalization
‘2 nuScenes W Waymo

> e —
; ¥ Unseen scenes <1
e &
—)
u s Seﬂlng h
w/o pedestrian w/ pedestrian

[erererrT—

Unseen objects
_

- The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly.

OpenﬂriveLab




DrivelLM - At A Glance
]

Graph Visual Question Answering
~——————>3 QObject Level

O O @ ! Py - Perception

Q - Question; A — Answer;

objects worth noting

A: k
pedestrian in front of

"

Graph Visual QA

Q: important objects
Predicted Answer
GPT
3 Score 3

Trajectory Prediction

Ground Truth Answer

\ DriveLM-Agent

”_" 119
= Q:
g Sl pedestrian
- <O A: objects may move to the right
lane, cross the ped-crossing
1
............ [{3
Q: the safe actions
______________ objects?
A: wait for
----------- pedestrian

turn right.
”

Prompt: the motion
Predicted Trajectory Ground Truth Trajectory
Displacement
¢ Error
Generalization

7. nuScenes

*% Unseen scenes
&
_—
sensor setting

w/o pedestrian
T——E

w/ pedestrian

Unseen objects
_—

- The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly.

Open.ﬂ riveLab




DrivelLM - Data

DriveLM-nuScenes
Selected Key Frames & Key Objects

I Checklist
- N Human - Factual Questions
&1 Questions v Amataix
e PR answers of
Error Feedback e " ¢ previous and next frames?
What to do? o Fofo + Open-ended Questions
N lefer
— e,

Always Brake. Quality Check diversity avoid

lo fixed formulaic answers.

Qualified Data
Open-ended Questions Factual Questions

Rule-base generation

What to do? Human annotated Moving state? from GT of nuScenes

DriveLM-CARLA
Configure GS Town Settings

carLA &
Simulator Execute Expert

Generatel Example Image

- Sensor Data | ‘
+ Object Info =
- Envi

nvironment T 'r

[ Rule-based QA Generation ]

|

[»3( Graph Building ]& @ L

I Quality Check
Qualified Data
]Objects? ] ]Where‘? | IAction? ]

A

B

[Maroon carl [Hight to egol [Follnw slowlyl

- To ensure the data quality, we introduce human annotation with

multi-round quality check in nuScenes.

- To scale-up annotation, we adopt auto-labelling in CARLA.

OpenﬂriveLab



DrivelLM - Data

DriveLM-nuScenes
Selected Key Frames & Key Objects

| Checklist

= Factual Questions

T : Huﬂn'an
& Questions _v Annotator
e Sample 10% answers of
Error Feedback e ampe T previous and next frames?

Always Brake. diversity avoid

Quality Check fixed formulaic answers.

1©
Qualified Data
Factual Questions

[ What to do? @ S Open-ended Questions
<— e

Open-ended Questions -
Rule-base generation

What to do? Human annotated Moving state? from GT of nuScenes
| Parked.

[ Rule-based QA Generation ]
¥

{&f Graph Building ]«A @ ——————
1 Quality Check
Qualified Data
JOhJE!CTS? ] JWhere'? I lActirm'? I

DriveLM-CARLA
:ﬁ Town Settings

@ Cun{lguru .
Enl!l.ﬁ !
S IEiT g Execute Expert E
Ganemtel Example Image E
| F 1
@AM | - Sensor Data ] i
- Object Info i
72| - Environment T E- i
1
1
i
1
|
1
1
]

[Maroon car | [F!ight to ega] |Follow slowly|

- To ensure the data quality, we introduce human annotation with

multi-round quality check in nuScenes.

- To scale-up annotation, we adopt auto-labelling in CARLA.

Object Identification
Position & State

Important
Object

Lane &

Map

Distribution
of Questions Traffic
Signs

= Perception = Prediction = Planning

Diversity matters, spanning from
perception to prediction and
planning.

OpenﬂriveLab




DrivelLM - Experiments

Method Behavior Motion Behavior (B) Motion (M)
Context Context | Acc. T Speedt Steer? | ADE| FDE]
Command Mean - - - - - 7.98 11.41
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47
None B 35.70 43.90 65.20 2.76 6.59
DriveLM-Agent Chain B 34.62 41.28 64.55 2.85 6.89
Graph B 39.73 54.29 70.35 2.63 6.17

- Trained on DriveLM-Data (huScenes-based),
DriveLM-Agent (ours) gains better zero-shot
ability on Waymo scenarios, overpassing other
methods by a large margin.

OpenﬂriveLab




DrivelLM - Experiments

Perception E

|
Method Behavior Motion Behavior (B) Motion (M)
Context Context | Acc. T Speedt Steert | ADE| FDE|]
Command Mean - - - - - 7.98 11.41
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47
None B 35.70 43.90 65.20 2.76 6.59
DriveLM-Agent Chain B 34.62 41.28 64.55 2.85 6.89
Graph B 39.73 54.29 70.35 2.63 6.17

- Trained on DriveLM-Data (huScenes-based),
DriveLM-Agent (ours) gains better zero-shot
ability on Waymo scenarios, overpassing other
methods by a large margin. (© g ]_,[0

- Qualitative result shows that
DriveLM-Agent does understand [ e i ]—>[
the unseen scenarios in some

Open.ﬂriveLab




DrivelLM - Limitation

@ ' % Fﬂﬂl
—=)

N4

2

]
§77

Driving-specific Inputs Closed-loop Planning Efficiency Constraints
DriveLM-Agent cannot DriveLM-Agent is Inheriting the drawbacks of
handle common setting evaluated under an open- LLMs, DriveLM-Agent
such as LiDAR or multi-view loop scheme, while closed- suffers from long inference
images as input, limiting its loop planning is necessary time, which may impact
information source. to see if it can handle practical implementation.

corner cases.

OpenﬂriveLab
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Embodied Understanding

Embodied Understanding of Driving Scenarios

1,2% 1,2+

Yunsong Zhou Linyan Huang'* Qingwen Bu Jia Zeng! Tianyu Li'3
Huang Qiu® Hongzi Zhu*® Minyi Guo? Yu Qiao' Hongyang Li'f

! OpenDriveLab, Shanghai Al Lab 2 Shanghai Jiao Tong University
3 Fudan University 4 University of California, Riverside
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ELM - Introduction

- Embodied understanding.

- interacting with environments & reasoning via common sense.
- Vision-Language Models.

- 2D domain: description
- Expanding Vanilla VLMs to Driving Scenes.

- Task: embodied understanding of driving scenarios.

- Capabilities: description, localization, memorization,
forecasting.

- Model: ELM with long-horizon space and time.

Description —
- Benchmark: A spectrum of tasks in an embodiment setting. , —
; Localization —j
Vanilla
VLM — ELM
. Memorization —j
Forecasting —

OpenﬂriveLab




Embodied Understanding e

Capability Type

1 t+n o
+ P

The ego car saw a Keep going straight
<turn_right> sign. 1.0. steadily.

Avanis to the right
. of the yellow cab. J

- ELM is an embodied language model for understanding the long-horizon driving scenarios in space and time.
- We expand a wide spectrum of new tasks to fully leverage large language models in an embodiment setting.

Open.ﬂriveLab




Embodied Understanding

00

Surrounding Narration O O
Iy

73.2 J Capability Type

de:scnphon

Description [

Forecasting

A A yal‘nw tod is d'lvmg ona stzaa* passing

4

i |

by frees.
Traffic Sign Inquiry oo

| 2 3

I 765
£t

) s the ego vehi ny traffic sign
before?
A Yes. The car has seen | <go_straight>
before. T
Action & Decision 00 ¥~

The ego carsaw a
<turn_right> sign.

A Slow down to Keep a safe distance.

¥ - &
- - v
Tracking O Box Detection Box Prediction
o e

BLIP2-flant5 (baseline) g

ELM on nuScenes
W ELM on Ego4D =8

2 saconds inr

ﬁerure in the history?

mp |

Egocentric Narration O

o g =

1 caption f¢

A: He tums the steering wheel to cross the
Intersection ahead.

Moment Recap
T— 24

130 seconds before in

thethtor\ﬂ
A:He drived pass the motorcycle.

Event Query

BE

38.0

A He will drive through the junction

OpenﬂriveLab



Embodied Understanding

Pre-training

o 7

Y @

Open World
Data Corpus

gl Text Encoder o é
Enc. Dec.
Q’) Image Encoder
Space-aware

Pre-training

Fine-tuning

Where is in
the

record?

[ &
past

Encoding

|

Encoder

fam )

Text

3

Image
Encoder

0000

Video Token

(—
&
LoRA
Learnable Query
O00®
kv | @
J— C]—-
Token Bank FlanTs
O
5 W™ O
Lo R [n.h ., BEEL Selected
g 1S ! ﬁ Token
Time-aware
Token Selection Language Model

OpenﬂriveLab



Embodied Understanding

Location Labeling

@ GPT-4 ) Sampling
Inspector
Point Cloud (x. y. z)
o
4.

Data Batch

Annotation - Quality check

3.

Select

Q: What are the 3D spatial
coordinates of the pixel at

Sampling & Filling

Description Labeling

## nuScenes W Waymo Example Image
B\ A
3 Youtube EGYI@ Ego4dD

World Data Cr]—~ Raw Data

Data Batch
awl
2;
Sampllngl 3 °

4. 1 Feed

Vision-
Language
model Rerun

T Biackiist

P
Discard
Quality Check

A: Location: x.y. z,
Category: Car

The driving scene in the
image f 1 bus

t with.++
The fraffic light is green::-
The ego-vehicle

Manual Revision | 8.

~"c>o)0 7. ®

6
NN

The traffic light ° =, Discard
isred--- X

Quality Check

Examples of Description Labels

Q: What is the unusual about the driving scene?

Q: Please describe the driving scene,

A: The scene shows a busy city street with a construction
site on the side of the road. There is a traffic light visible
in the background. The unusual element in this scene is
the presence of a construction site, which may cause
traffic disruptions or delays.

Q: How should the ego-vehicle drive at this point?

A: The ego-vehicle should follow the traffic light's
instructions and wait for the light to turn green
before proceeding.

A: The scene is a road with a curvy, winding path,
surrounded by trees and hills. The road is empty, with
no other vehicles visible. The sun is setting, casting a
warm glow over the scene.

Q: Are there any potential dangers in the scenario?

A: The ego-vehicle should continue driving through the
intersection, following the traffic light's instructions. It
is important to be cautious and attentive to the
pedestrians to ensure safety for all involved.




Embodied Understanding

Tracking Box Detection | Box Prediction Traffic Sign Inquiry Surrounding Narration | Action & Decision
Pr@l Pr@2 | Pr@l Pr@2 | Pr@l Pr@2 © R B C R B C R B

BLIP2-opt [27] 0.1 0.1 0.1 0.2 0.2 0.5 230 269 20.5 8.1 19.7 21.2 84 115 111
BLIP2-flant5 [27] 3.0 6.0 5.1 10.5 3.6 6.3 63.1 39.4 31.4 65.2 64.9 279 | 68.7 714 43.1 2 ol B
LLaMA-Ada. [ |7] 6.1 10.5 8.3 14.9 7.5 12.5 M @ M m m 60.1 m M 64.7 Q: Determine the 3D location in the scene of the 2D pi

505.9> 3 seconds later?

Methods

xel at <c, 865.3,

LLaVA [32] 55 93 | 285 312 | 61 102 | 511 585 508 | 649 646 412 | 644 624 579 BLIP2-T5: Location: [118, 36,9, 1561, Car
Otter [26] 100 172 | 418 469 | 89 158 | 628 411 324 | 60.0 642 133 | 692 732 53.0 Ours: Location: [0, 38, 0, Pedestrian
VideoChat [25] 04 09 | 01 03 | 01 02 [253 219 117 | 217 292 122 | 296 332 13l O ocstion 0123845 0051 Pedestrian
Vid-ChatGPT [36]| 0.1 06 | 01 1.0 | 03 12 | 496 571 486 | 61.0 696 372 | 536 585 435  t-n e sl loguley
ELM (Ours) | 140 233 | 5.6 569 | 151 244 | 765 712 639 | 732 787 298 | 744 833 412 :

(a) nuScenes. We outperform the best previous methods on most metrics across the six tasks on nuScenes which validates the generality of our model.

Methods CMomerll; Reca;;3 . EvemRQuery . Egéocentnl; Narra;;on A(;:tl\’lty [l;redlcn(];n Methods # param
BLIP2-opt [27] 12 89 68 | 7.8 284 147 | 52 198 107 | 27 187 96 BLIP2-opt 27B BLIP2-75: There i o traffc 5ign in he scene _
Ours: The ego vehicle has seen 1 go_straight, and 1 turn_right before.
BLIP2-flant5 [27] | 13.1 319 125 | 273 330 166 | 169 335 154 | 115 312 113 BLIP2-flant5 | 2.7B &7+ The ego yehidle fasaseen | gorsthalgh and urmusigh thefore:
LLaMA-Ada. [17] | 112 302 123 | 375 472 281 | 184 342 153 | 131 312 128 LLaMA-Ada. | 7B 1216 Memory Recap
LLaVA [32] 96 283 121 | 398 446 299 | 65 282 116 84 280 13.0 LLaVA 7B B,
Otter [26] 114 296 105 | 27.1 383 19.1 | 141 314 139 1.1 294 103 Otter 7B
VideoChat [28] 132 325 13.8 | 345 422 264 | 20.7 350 17.6 | 121 324 14.1 VideoChat 7B
Vid-ChatGPT [36] | 10.0 31.1 133 | 279 365 209 | 102 21.7 104 94 305 126 Vid-ChatGPT 7B
ELM (Ours) | 226 367 194 | 380 431 276 | 265 377 169 | 181 341 170 ELM (Ours) | 2.7B

\ 4
Q: "What happened 12.1 seconds before?

BLIP2-T5: C stirs the meat in the frying pan

Ours: C moves the meat from the frypan to the plate
GT: C moves the meat from the frypan to the plate

(b) Egod4D. We extended the model to Ego4D dataset and verified the generality of our token bank module on four tasks. (c) Adopted LLM params.

OpenﬂriveLab




One-page Takeaway
- End-to-end Autonomous Driving

- Challenge: Generalization & Explainability

- Recent trend: use vision language model to embed “world knowledge” to solve the
challenges.

- DrivelLM: Driving with Graph Visual Question Answering
- Use Graph VQA as a proxy task to mimic human'’s driving logic

- Some good result under zero-shot setting, but still far from claiming good
generalization.

- ELM: Embodied Understanding of Driving Scenarios

- Revive driving scene understanding by delving into embodied settings, along with
capacities, tasks, and rubrics.

- Expand vanilla VLMs to process long horizon space and time (open-world data &
module design).

OpenﬂriveLab
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End-to-end Autonomous Driving

Key Challenges



Challenges in End-to-end Autonomous Driving

@1
o

Input Modality

Policy Distillation

Visual Abstraction

I E3

Interpretability

¢ (o
clo

World Model

-~
< }

Causal
Confusion

Multi-task
Learning

Robustness and Generalization

OpenﬂriveLab




W&k (1/8) - Input Modality

(a) Input modality

Visual (((,)) : A . '"-’c
Sensors : %’ .

= |

il h
Navigation ©
Signal | | ©x
Middle Fusion

Vehicl
Seta;::se ﬁ_’.}/ (;) : ' . @ command
Language Q_BT’E “—* @ fg

Instruction [ite Fusicr output

i (b) Fusion strategy

1P
concat /
attention

fused
feature

Early Fusion: Combine sensory
information before feeding it into the
feature extractor

Middle Fusion: Separately encode
inputs and then combining them at the
feature level

Late Fusion: Combine multiple results
from multi-modalities (Worst
Performance)

OpenﬂriveLab




Hk&® (2/8) - Visual Abstraction

Current methods first pre-train the visual encoder of the network using proxy pre-training tasks.

|

There inevitably exist possible information bottlenecks in the learned representation, and
redundant information unrelated to driving decisions may be included.

OpenﬂriveLab



ek (3/8) - World Model

States Cost / Reward
RL Gyms - Ego agent - Success/Fail
- Other objects (static) - Intermediate Reward

- Background environment

Autonomous Ego-vehicle - Collision
Driving - Other vehicles, - Comfort
edestrians, cyclists, etc
In a nutshell: b . b/ - Forward
State ot the world at time t: s(t) (moving)
Imagined action taken at time t: a(t) ; - etc
Causal prediction: - Back@md environment
s(t+1) = g(s(t),a(t)) C

where g() is the world model. . .
Such a *causal* world models enables planning. Compllcated! Hard to define!

A video predictor?

OpenﬂriveLab




Hkkk (4/8) - Multi-task Learning

Multi-task learning (MTL) : Jointly perform several related tasks based on a
shared representation through separate branches/heads.

Challenges

e Significant computational cost e The optimal combination of
reduction auxiliary tasks and the appropriate
e Related domain knowledge is weighting of their losses
shared within the shared ® Construct large-scale datasets with
model multiple types of aligned and high-

quality annotations

OpenﬂriveLab



Hk&k (5/8) - Policy Distillation

The popular “Teacher-Student” IL Paradigm

‘ - Expert (by RL/IL/hand-rule, gt input)
.. Xpe @ éé - Not/Can'’t perfect, even for a certain benchmark
= Method Input Driving Score
Transfuser [39, 8] Camera + LiDAR 31.0
i [ prian oG J . LAV [3] Camera + LiDAR 46.5
AL — — =] Student Model .
ol agent @ 5 + Frozen Roach Camera + LiDAR 8.9
Roach [55] Privileged Info. 74.2
e l B N I Roach + Rule [50]  Privileged Info. 87.0
_, | Sensorimotor | | @ =] From DriveAdapter work,
agent g ICCV 2023

(b) Sensorimotor agent training

- What for or How to Distillation

- Expert: Ground Truth (GT) to - Critical features

action - - i
[ Gap Input gap - Casual confusion

Student: Image to action

v

OpenﬂriveLab




Hkik (6/8) - Interpretability

Summary of the different forms of interpretability

Learned AttentionJ -
oo Weights They aid in human
—— e :
ransfomer | comprehension of the
Dense Seg/ .4 r
Inte.lr_prektable Depth decision-making processes
askKs
Object Det / Pred
joct Det / Pred | of end-to-end models,
Interpretability |, ) perception failures, and the
forE2EAD |\, | 2
.I“.I

reliability of the outputs.

Natural Action Description

The car is driving
Language

forward as there is
noting to impede it.

Occupancy
Cost Learning
Motion Fields

Action Explanation

| R N W S—

v .| Aleatoric/Data
\[ Uncertainty | Uncertainty
Modeli :
ocetng ’ \ Epistemic / Model
Uncertainty

OpenﬂriveLab



Hk&® (7/8) - Causal Confusion

® Driving is a task that exhibits
temporal smoothness, which makes

Dimension
ESREIEtG past motion a reliable predictor of the
next action.
- | am braking because
o —— / 566 8 rod light. Brake? e However, methods trained with
Input image € R i3 multiple frames can become overly
reliant on this shortcut. This is

Dimension
Correlation X' referred to as the copycat problem
Y and is a manifestation of causal
. -1 braking b a
ooy Rt | " am kg tecao | confusion,

OpenﬂriveLab




Hk&E (8/8) - Robustness and Generalization

Common
non-critical cases

/ Various rare but

safety-critical cases

|

(a) Long-tailed Distribution

Learned Policy

No data on
how to recover

Expert Trajectory

Source Domain Target Domain

Simulator —>  Real world

LocatonA —  Location B

Weather A ———*  WeatherB
Day T Night

Sensor A &5 Sensor B

(c) Domain Adaptation

M

OpenﬂriveLab
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End-to-end Autonomous Driving

Future Work



Gap between The Rest and SORA

Need massive collection, including

e High-quality Video Data| g
O Long duration( > 60s) , high resolution, large motion,
comprehensive scenarios
o Existing public video datasets are inadequate in both quality
and duration. (e.g., webvid 10M, internvid, vimeo 25M)

O Filmdatais a good source. (movies, documentaries, animations, ”
(0] short duratlon small motion, simple scenario

g SVD (Previous
Sota)

etc.)
Functionality —image — video
1024 x 576 x 4s x 6Hz
. Need to build from
e Spatial-temporal VAE' scratch
o0 Videos are highly redundant in temporal dimension, Model Spatial VAE
+ UNet

O thus should be compressed for efficiency.
O The key ingredient to long video generation.
m  SVD (<5s) = SORA (60s)

Training data

152M (0.15B) video clips
(low quality, short duration,
small motion, simple
scenarios),

Public, DiT (But need to

i i : be extended to vid
e Diffusion Model Architecture yggonm

o Temporal attention alone is not efficient for modeling large
motions.
O We need (global) spatial-temporal attention, which requires
1 or I'QCIII c ’\F ar Cf"\l;l’\
more compute but yields beffe avallable. Dot have g.
some weaker public

{9 Most of YouTube Videos are

solutions

e Highly-capable Video Captioner
o Annotating accurate and expressive captions for
each video clip.
O Public solutions: LLaVA, VideoChat, GPT-4.

noisy, short-period, and in small
motion.

& long duration, large motion, complex scenario
text/image/video — video

1920 x 1080 x 60s x 30HzZ.

Owe to the compression
by spatial-temporal VAE
Spatial-Temporal VAE +

DiT (More scalable)

>> 1B video clips (approx.)
(high quality, long duration, large motlon
comprehensive scenarios) gl

LTI
WOMEN

& We may need film data, which are
long-period, highly-dynamic, and
highly-aesthetic.

(movies, documentaries, animations,
etc.)



Milestone in Computer Vision (1/2)

el

D14.6
X
' ‘H: ]:(x) g N\ Posicizy? fl]g‘;:ection ["] Colo?:qul;le‘nsicy f DETR m )
Uni ité x [»(X.y.z,w)—v —'(RGBﬁ)—\ -
GAN  Uniregsite Mask  OQ b Fo e Meta
Meta i N
F(x) +x R-CN N &"/@ } > ("f@/
G " - Unleashing the power s (a) It_everfage ¢
enerative i ransformers for
of deep neural networks. egment instances idoi :
adversarial - Stacking more layers -> via an effective ?:(:g!;ié[:ijzgﬁgh end-to-end object
network better performance mask branch. [PRSSELEL detection.
\ J p . \ multi-view images. J
A ¥ A& ¥ >
A prominent framework ( ) Simple yet effective ( Representing objects as
for generative Al. ResNet =. objec'f centric learning NeRF Ie.a‘rnable querigs d(.)min.a'tes
paradigm. vision tasks for its simplicity
and flexibility.
Residual R t Eﬁ,&k@l@y !— _____ decoder prediction heads E,_
epresen ! —
connection.s . chnes as Neural ﬁ
Znables bU|IId|ng Radiance Fields » "f,"s"’éme' \ P e oo,
\_C€Ep neura J for View Synthesis | ; eooder i\ e |

Towards AGI in Autonomous Driving - Dr. Hongyang Li

iada | Nm

object queries

OpenﬂriveLab



Milestone in Computer Vision (2/2) ~ Scaling up data and
model is the key to

success !
; m
: ] [
‘ l 2 . 21 1 1 = Latent Space \ itioni 2 . 2 4
. . . Lo 0T | T [Ty LTy Diffusion Process —————>}
I LT, ‘|,-1' LT, 1T, ( Denoising U-Net €9 \or
| [om [am[un | - [ P s N
e 2 | Lo || BT | Ty [Ty Iy Ty 7 \
. - : - SAM v
VISIOn b I T T | Ty INTy MAE Meta
Transforme R , . -
; : ,iflrstttlmeI succ;e:s |n(|1e\;erag|ng dencisingstop_crossaflonion _swiich sk connaction_concat Annotate 1 billion
mFerT.e sca I(Jac.mu (; rlno a co:‘pusi:k Scale up vision y Pre-trained on billion-scale mask with semi-
ueling rr;)u || mo' :?\ rese:;\(rc es like models via |mage-.text data. . p supervised model
Pure opgn—voca ulary .VISIOI’] tasks, text- masked image - Opening the er.a of high-quality in the loop.
transformer to-image generations, etc. (_modeling. ) content generation. L J
wmtkc in‘ieion  J A v— A >
og e I} . s
Unifying i Mfodel architecture of ( ) A huge success of self- ( h A promising way to
vision and language, CLIP supervised learning in Latent . enlarge vision data via
enabling multi-modal researches. vision. Diffusion semi-supervised data
Class B engine.
£ :
cir Head Connect texts and : . . e —
{ l images via large- N ;E High-quality o .
Transformer Encoder . i i @
scale contrastive g image generation
learning via diffusion in the L o —
e posiion @13 @) 60) 6) @) \ : J H latent space
s ‘ Lmenr ijecunn of Flnuened Pmches L > - / SeEmen i IIBHSASIR);
. | + 1+ billion masks =
S i * 11 million images ]
wgn—»HliﬂﬁﬁﬂWWE R = A}
o] 0 m B e )

(c) Data: data engine (top) & dataset (bottom)

Towards AGI in Autonomous Driving - Dr. Hongyang Li

OpenﬂriveLab




Towards Intelligent, Reliable and Generalizable Autonomy =g
I = ~&e
Data-centric Pipeline Pre-training DriveCore Applications
Foundation Model Autonomous Driving

Data Collection

” Motional
ARGO lgn

© YouTube

Data Generation Integrated and General AGlI
for autonomous driving
How to formulate?

What's the objective goal?
GenAD (our on-going project)



http://drive.google.com/file/d/1zoGswRmw1P-8h6jzb5JOMXARYDNDxMld/view

Foundation Models

NLP (LLM) General CV

ChatGPT

xxxxxx

EEDEWI R
v
EEE-EEEEEEEEEEEE

AD System

e Language Interpreter e Vision Abstractor
e Driving Knowledge e Auto-labeling
e Any more? e Any more?

OpenﬂriveLab




Foundation Models (cont’d)

NLP (LLM) General CV

. ChatGPT

action

percept :

e Multimodality

e Intelligence
AD System e Generalization

OpenﬂriveLab



Insight from Robotics / Embodied Al

Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop
. ) Robot Control
Q: What is happening Q: What should the robot
in the image? Cotostaety v RT-2 Large Language Model

w SO Y- L e R i o B, o
A grey donkey walks ) T T T
EJ

down the street.
t ViT R =Y ==

Q: Que puis-je faire avec BE
bjets?
ces objets L: ahﬂ
[Faire cuire un géteau.l D l

A: 132 114 128 5 25 156
De-Tokenize

Put the strawberry
into the correct bowl

Q: What should the robot

do to <task>? Robot Action

s S '
= | ATranslation = [0.1, -0.2, 0] 4
ARotation = [10} 25° -7°] Co-Fine-Tune Deploy T T .
Pick object that is different
e How vision-language models trained on Internet-scale data can ® Robotic tasks naturally fits into language at

be incorporated directly into end-to-end robotic control dissecting tasks step by step using language

(prompt).
e Goal: to boost generalization and enable emergent semantic
oo e Isit the right way to open the Ianguage tool box as
. .. ‘alala - ?

Key ingredient(s): huge amount of data (not public) + Open[RriveLab

lan prompt to dissect tasks



Analogy to General Domains in Cv/ NLP Robotic

Domain Method Abbreviation Institute / Time Data Scale Public?
GPT-4 @ OpenAl /2023.3 13T tokens X
General '\Et';l
Large (LLM) LLaMA 2 @] Meta / 2023.7 2T tokens ~
Models ., ViT-22B {5  Google/20232 4B images X
Vision Language i Salesforce / . i .
(LLM backend) BLIP-2 R 5ad 129M images-text pairs %
DriveAGI (GenAD) 3 gggg El)glveLab / 2000 h videos (public) [_
P
: ATl GAIA-1 @ Wayve /20236 4700 h videos X
Industrial - A sh (ENAE
nuScenes: 4.
Large \[/)Veorrr‘lgl Mlget T Tesla / 2023.6 Unknown (Large-scale) X
Models
(Application) PaLM-E Google / 2023.3 Unknown (Large-scale) X
Robotics
(LLM backend) RT-2 5 @ DeepMind / 2023.7 1B img-text pairs / 13 X

robots / 17 months

OpenﬂriveLab




Trending: Recent Work on World Model

From simulated agents to real-
world driving systems

RL Agents O

18.3 20.3 22.6
World Models: Dreamer V1/2/3:
Training agents inside  Towards general agents with
their dreams scalable world models

(a) Control Suite (b) Atari (c) DMLab (d) Minecraft

0
23.6

Driving

OpenﬂriveLab



Trending: Recent Work on World Model

From simulated agents to real-
world driving systems

RL Agents O
18.3 20.3
World Models: Dreamer V1/2/3:

Training agents inside
their dreams

Towards general agents with
scalable world models

Position Paper

(by LeCun)
Positioning the
developments of world
models

0 U Driving
22.6 23.6
I-JEPA:

Capturing visual knowledge
in self-supervised manner

World model to generate videos of the driving scenario. Then what?

23.6

Scaling up world models on large
corpus of realistic driving videos

General World Model: inhouse data '

collected around the globe

TESL M
GAIA-1: 4700 hours of driving videos
collected in London

OpenﬂriveLab

Is it useful for downstream tasks?

To be validated



Personal Take on Foundation Models into Autonomous
Driving

End-to-end
Auto Driving

Pros:

1. Scalability
2. Global optimization
3. Easy-to-embed Infra

For:

— Generalization/Robustness
— Performance
— Feasibility for deployment



Personal Take on Foundation Models into Autonomous

Drivin e G)OpenAl :
5 Video generation models as world simulators

Mind-blowing Part

End-to-end
Auto Driving

Pros:

1. Scalability
2. Global optimization
3. Easy-to-embed Infra

For:

— Generalization/Robustness
— Performance
— Feasibility for deployment

Some rumors:
- 0.8M GPUs
- 50B video clips from Microsoft (ref: Youtube has 13B videos)
- This a side project from OpenAl



Personal Take on Foundation Models into Autonomous
Research @OpenAI

Video generation models as world simulators

Driving

End-to-end
Auto Driving

Pros:

1. Scalability
2. Global optimization
3. Easy-to-embed Infra

For:

— Generalization/Robustness
— Performance
— Feasibility for deployment

Mind-blowing Part

Some rumors:

0.8M GPUs
50B video clips from Microsoft (ref: Youtube has 13B videos)
This a side project from OpenAl

Data-driven

Reliable and Generalizable
stfnm

[ Iowards Intelligent, ]

Metric-

Alg-driven driven

Scaling data in all levels with

self-supervised learning .
— Interaction between

Simulating the physical world agents and

env/physical world
Rule of thumbs from

foundation models — Pixel-level not suffice

Actions require latent
abstractions. Depends
on task.

Authentic evaluation metric.

Guarantee reliability and
safety.
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FEiiL{EikH - Part 3

End-to-end Autonomous Driving



OpenﬂriveLab

GAIA-1

End-to-end Autonomous Driving



. . https://arxiv.org/abs/2309.17080
GAIA-1 | Motivation

Want to solve the problem:

How to predict the various potential outcomes that may emerge in
response to the vehicle's actions as the world evolves?

Current limitations: GAIA-1 can:
- Labeled data: hard to obtain at scale - Combine world models and generative video
. A . rati
- Simulated data: low-dimensional Jolgetiielt
representations; hard to capture the - Ensure the realism of generative video models and
complexities of real-world learn meaningful representations

OpenﬂriveLab


https://arxiv.org/abs/2309.17080

https://arxiv.org/abs/2309.17080

GAIA-1 | Method

B, BREMEBNES (R, XA, oF) KERwE
AR, B, XAMEI GRS /I—% S token

input
tokens

B

input image
video 9 encoder 9_:

- ‘

9 action
encoder

“I am approaching a

crossing yielding
to pedestr1aﬁ?. _) text
“It is safe to move encoder
so I am now

accelerating”

OpenﬂriveLab



https://arxiv.org/abs/2309.17080

https://arxiv.org/abs/2309.17080

GAIA-1 | Method

HRERE—NB[ETtransformer, BLUSERIEIE. SXAFIEHE
token IS RFUN T —ME & token

input output
tokens tokens

input image
video 9 encoder 9_:

9 action
encoder

autoregressive

’ ]
' 1
N o . '
| prediction : -

“I am approaching a

crossing yielding
to pedestr1aﬁ?. _) text
“It is safe to move encoder
so I am now
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GAIA-1 | Experiment
—

In Image Tokenizer, GAIA-1 guides the compression towards meaningful
representations by regressing to the latent features of a pre-trained DINO model.

(a) Input image (b) Base VQ-GAN tokens (c) DINO-distilled tokens
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GAIA-1 | Experiment

To encourage diversity as well as realism, GAIA-1 employs top-k sampling to
sample the next image token from the top-k most likely choices.
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GAIA-1 | Experiment

Images generated by GAIA-1
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EgoStatus | Motivation

Current prevailing end-to-end autonomous driving methods commonly use nuScenes
for open loop evaluation of their planning behavior.

However:

® NuScenes dataset, characterized by relatively simple driving scenarios, leads to
an underutilization of perception information in end-to-end models.
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(a) Trajectory Heatmap (b) Typical Scene of nuScenes
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EgoStatus | Motivation

Current prevailing end-to-end autonomous driving methods commonly use nuScenes
for open loop evaluation of their planning behavior.

However:
® NuScenes dataset, characterized by relatively simple driving scenarios, leads to
an underutilization of perception information in end-to-end models.
® ADMLP recently points out that a simple MLP network can also achieve state-

of-the-art planning results, relying solely on the ego status information.
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EgoStatus | Motivation

Current prevailing end-to-end autonomous driving methods commonly use nuScenes
for open loop evaluation of their planning behavior.

However:
® NuScenes dataset, characterized by relatively simple driving scenarios, leads to
an underutilization of perception information in end-to-end models.
® ADMLP recently points out that a simple MLP network can also achieve state-

of-the-art planning results, rely@lely on the ego status information.

Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?
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EgoStatus | Method
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Ego Status L2(m) ] Collision (%) J, Intersection (%) |
ID | Method in BEV  in Planer Is 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg. ckpt. source
0 | ST-P3 X X 1.59"  2.647 3737 265" | 0.697 3.627 8397 4237 | 2537 8177 1447 8377 Official
1 | UniAD X X 0.59 1.01 1.48 1.03 | 0.16 0.51 1.64 077 | 035 146 399 193 | Reproduce
2 | UniAD v/ X 035 063 099 066 | 0.16 043 127 062 | 021 132 363 172 Official
3 | UniAD v v 020 042 075 046 | 002 025 084 037 [ 020 133 324 1.59 | Reproduce
4 | VAD-Base X X 069 122 183 125 | 006 068 252 1.09 | 1.02 344 7.00 3.82 | Reproduce
5 | VAD-Base v X 041 070 1.06 072 | 004 043 115 054 | 0.60 238 518 272 Official
|6 | VAD-Base v v 0.17 034 060 037 | 004 027 067 033 [ 021 2.13 5.06  2.47 Official |
7 | GoStright - v 038 079 133 083 | 0.15 0.60 250 108 | 207 809 157 8.62 -
8 | Ego-MLP - v 015 032 059 035 000 027 08 037 | 027 252 6.60 293
9 | BEV-Planner* X X 027 054 09 057 | 004 035 180 073 | 063 338 793 398 -
10 | BEV-Planner X X 030 052 083 055 | 010 037 130 059 [ 078 379 822 426 -
11 | BEV-Planner+ v X 028 042 068 046 | 004 037 107 049 | 070 377 815 421 -
|12 BEV-Planner++ v v 0.16 032 057 035 | 000 029 073 034 [ 035 262 651 3.16 - |
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EgoStatus | Experiment
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Scene

BEV-Planner

. https://arxiv.org/abs/2312.03031
EgoStatus | Experiment

Sample A Sample B Sample C Sample D

BEV-Planner++
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